ﺑﺎﺯﮔﺸﺖ ﺑﻪ ﺻﻔﺤﻪ ﻗﺒﻠﯽ
خرید پکیج
تعداد آیتم قابل مشاهده باقیمانده : 3 مورد
نسخه الکترونیک
medimedia.ir

Cancer immunoediting

Cancer immunoediting
Cancer immunoediting is an extrinsic tumor suppressor mechanism that engages only after cellular transformation has occurred and intrinsic tumor suppressor mechanisms have failed. In its most complex form, cancer immunoediting consists of three sequential phases: elimination, equilibrium, and escape. In the elimination phase, innate and adaptive immunity work together to destroy developing tumors long before they become clinically apparent. Many of the immune molecules and cells that participate in the elimination phase have been identified, but more work is needed to determine their exact sequence of action. If this phase goes to completion, then the host remains free of cancer, and elimination thus represents the full extent of the process. If, however, a rare cancer cell variant is not destroyed in the elimination phase, it may then enter the equilibrium phase, in which its outgrowth is prevented by immunologic mechanisms. T cells, IL-12, and IFN-γ are required to maintain tumor cells in a state of functional dormancy, whereas NK cells and molecules that participate in the recognition or effector function of cells of innate immunity are not required; this indicates that equilibrium is a function of adaptive immunity only. Editing of tumor immunogenicity occurs in the equilibrium phase. Equilibrium may also represent an end stage of the cancer immunoediting process and may restrain outgrowth of occult cancers for the lifetime of the host. However, as a consequence of constant immune selection pressure placed on genetically unstable tumor cells held in equilibrium, tumor cell variants may emerge that (i) are no longer recognized by adaptive immunity (antigen loss variants or tumors cells that develop defects in antigen processing or presentation), (ii) become insensitive to immune effector mechanisms, or (iii) induce an immunosuppressive state within the tumor microenvironment. These tumor cells may then enter the escape phase, in which their outgrowth is no longer blocked by immunity. These tumor cells emerge to cause clinically apparent disease.
Modified with permission from the Annual Review of Immunology. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural Innate and Adaptive Immunity to Cancer. 2011; 29:235. Copyright © 2011 Annual Reviews, http://www.annualreviews.org.
Graphic 103342 Version 1.0

آیا می خواهید مدیلیب را به صفحه اصلی خود اضافه کنید؟