ﺑﺎﺯﮔﺸﺖ ﺑﻪ ﺻﻔﺤﻪ ﻗﺒﻠﯽ
خرید پکیج
تعداد آیتم قابل مشاهده باقیمانده : -67 مورد

Benzhydrocodone and acetaminophen: Drug information

Benzhydrocodone and acetaminophen: Drug information
2025© UpToDate, Inc. and its affiliates and/or licensors. All Rights Reserved.
For additional information see "Benzhydrocodone and acetaminophen: Patient drug information"

For abbreviations, symbols, and age group definitions show table
ALERT: US Boxed Warning
Addiction, abuse, and misuse:

Because the use of benzhydrocodone/acetaminophen exposes patients and other users to the risks of opioid addiction, abuse, and misuse, which can lead to overdose and death, assess each patient's risk prior to prescribing and reassess all patients regularly for the development of these behaviors and conditions.

Opioid analgesic risk evaluation and mitigation strategy (REMS)

Health care providers are strongly encouraged to complete a REMS-compliant education program and to counsel patients and caregivers on serious risks, safe use, and the importance of reading the Medication Guide with each prescription.

Life-threatening respiratory depression:

Serious, life-threatening, or fatal respiratory depression may occur with use of benzhydrocodone/acetaminophen, especially during initiation or following a dosage increase. To reduce the risk of respiratory depression, proper dosing and titration of benzhydrocodone/acetaminophen are essential.

Accidental ingestion:

Accidental ingestion of even one dose of benzhydrocodone/acetaminophen, especially by children, can result in a fatal overdose of hydrocodone.

Neonatal opioid withdrawal syndrome (NOWS):

If opioid use is required for an extended period of time in a pregnant woman, advise the patient of the risk of NOWS, which may be life-threatening if not recognized and treated. Ensure that management by neonatology experts will be available at delivery.

Hepatotoxicity:

Acetaminophen has been associated with cases of acute liver failure, at times resulting in liver transplant and death. Most of the cases of liver injury are associated with the use of acetaminophen at doses that exceed 4 g/day, and often involve more than one acetaminophen-containing product.

Cytochrome P450 3A4 interaction:

The concomitant use of benzhydrocodone/acetaminophen with all cytochrome P450 3A4 inhibitors may result in an increase in hydrocodone plasma concentrations, which could increase or prolong adverse reactions and may cause potentially fatal respiratory depression. In addition, discontinuation of a concomitantly used cytochrome P450 3A4 inducer may result in an increase in hydrocodone plasma concentration. Regularly evaluate patients receiving benzhydrocodone/acetaminophen and any CYP3A4 inhibitor or inducer.

Risks from concomitant use with benzodiazepines or other CNS depressants:

Concomitant use of opioids with benzodiazepines or other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death. Reserve concomitant prescribing of benzhydrocodone/acetaminophen and benzodiazepines or other CNS depressants for use in patients for whom alternative treatment options are inadequate.

Brand Names: US
  • Apadaz
Pharmacologic Category
  • Analgesic Combination (Opioid);
  • Analgesic, Opioid
Dosing: Adult

Dosage guidance:

Safety: Consider prescribing naloxone or nalmefene for patients with factors associated with an increased risk for overdose, such as history of overdose or substance use disorder, patients with sleep-disordered breathing, higher opioid dosages (≥50 morphine milligram equivalents [MME]/day orally), and/or concomitant benzodiazepine use (Ref).

Dosing: Dosing provided is based on typical doses; some patients may require higher or lower doses. Individualize dosing based on patient-specific factors (eg, severity of pain, comorbidities, degree of opioid experience/tolerance) and titrate to patient-specific treatment goals (eg, improvement in function and quality of life, decrease in pain using a validated pain rating scale). Use the lowest effective dose for the shortest period of time.

Clinical considerations: Opioids may be part of a comprehensive, multimodal, patient-specific treatment plan used for managing moderate to severe pain. Maximize nonopioid analgesia (when appropriate) prior to initiation of opioid analgesia (Ref).

Pain management

Pain management: Oral: Initial, based on benzhydrocodone content: 4.08 to 8.16 mg every 4 to 6 hours, as needed, for pain (Ref); titrate to provide adequate analgesia while minimizing adverse effects; maximum: 12 tablets per 24 hours. Do not exceed acetaminophen 4 g/day from all sources. Note: Use the lowest effective dosage for the shortest duration. Do not use >14 days. Initial dose is based on the benzhydrocodone content; however, the maximum daily dose is based on the acetaminophen content.

Conversion from hydrocodone bitartrate (immediate release) to benzhydrocodone:

Hydrocodone bitartrate 5 mg is equivalent to benzhydrocodone 4.08 mg.

Hydrocodone bitartrate 7.5 mg is equivalent to benzhydrocodone 6.12 mg.

Hydrocodone bitartrate 10 mg is equivalent to benzhydrocodone 8.16 mg.

Conversion from other opioids to benzhydrocodone: Substantial interpatient variability exists in relative potency. Therefore, it is safer to underestimate a patient's daily oral benzhydrocodone requirement.

Discontinuation of therapy: When reducing the dose, discontinuing, or tapering long-term opioid therapy, the dose should be gradually tapered. An optimal tapering schedule has not been established. Individualize tapering based on discussions with patient to minimize withdrawal, while considering patient-specific goals and concerns and the opioid’s pharmacokinetics. Proposed initial schedules range from slow (eg, 10% reduction per week or 10% reduction per month depending on duration of long-term therapy) to rapid (eg, 25% to 50% reduction every few days) (Ref). Slower tapers may be appropriate after long-term use (eg, >1 year), whereas more rapid tapers may be appropriate in patients experiencing severe adverse effects. During tapering, patients may be at an increased risk of overdose if they return to their original (or higher) opioid dose or use illicit opioids, due to rapid loss of tolerance; consider prescribing naloxone or nalmefene. Monitor carefully for signs/symptoms of withdrawal. If the patient displays withdrawal symptoms, consider slowing the taper schedule; alterations may include increasing the interval between dose reductions, decreasing amount of daily dose reduction, pausing the taper and restarting when the patient is ready, and/or coadministration of an alpha-2 agonist (eg, clonidine) to blunt autonomic withdrawal symptoms and other adjunctive agents to treat GI symptoms and muscle spasms, as needed. Continue to offer nonopioid analgesics as needed for pain management during the taper (Ref).

Dosage adjustment for concomitant therapy: Significant drug interactions exist, requiring dose/frequency adjustment or avoidance. Consult drug interactions database for more information.

Dosing: Kidney Impairment: Adult

There are no specific dosage adjustments provided in the manufacturer's labeling; use with caution. Initiate therapy with a low dose and monitor closely.

Dosing: Liver Impairment: Adult

There are no specific dosage adjustments provided in the manufacturer's labeling; use with caution. Initiate therapy with a low dose and monitor closely.

Dosing: Older Adult

Note: Minimize opioid use in older adults unless for the management of severe acute pain. Opioids are associated with an increased risk of falls and inducing or worsening delirium in older adults (Ref).

Refer to adult dosing. Initiate dosing at the lower end of the dosage range; titrate slowly. Monitor closely.

Adverse Reactions

The following adverse drug reactions and incidences are derived from product labeling unless otherwise specified. Also see acetaminophen and hydrocodone.

>10%:

Dermatologic: Pruritus (12%)

Gastrointestinal: Constipation (12%), nausea (22%), vomiting (13%)

Nervous system: Drowsiness (19%)

1% to 10%:

Cardiovascular: Hypotension (1% to 5%), presyncope (1% to 5%)

Endocrine & metabolic: Hot flash (1% to 5%)

Gastrointestinal: Abdominal distention (1% to 5%), abdominal pain (1% to 5%), flatulence (1% to 5%)

Nervous system: Asthenia (1% to 5%), dizziness (8%), headache (6%), tremor (1% to 5%)

Respiratory: Dyspnea (1% to 5%)

<1%:

Cardiovascular: Chest discomfort, syncope

Gastrointestinal: Diarrhea, gastroesophageal reflux disease, hematemesis

Nervous system: Agitation, euphoria, hypoesthesia, nightmares

Ophthalmic: Eye pruritus

Respiratory: Rhinitis

Frequency not defined:

Nervous system: Drug abuse, neonatal withdrawal, opioid dependence

Respiratory: Respiratory depression

Postmarketing: Nervous system: Allodynia (opioid-induced hyperalgesia) (FDA Safety Communication 2023)

Contraindications

Hypersensitivity (eg, anaphylaxis) to hydrocodone, acetaminophen, or any component of the formulation; significant respiratory depression; acute or severe bronchial asthma in an unmonitored setting or in the absence of resuscitative equipment; GI obstruction, including paralytic ileus (known or suspected)

Warnings/Precautions

Concerns related to adverse effects:

• CNS depression: May cause CNS depression, which may impair physical or mental abilities; patients must be cautioned about performing tasks which require mental alertness (eg, operating machinery or driving).

• Constipation: May cause constipation which may be problematic in patients with unstable angina and patients with post-myocardial infarction (MI). Consider preventive measures (eg, stool softener, increased fiber) to reduce the potential for constipation.

• Hepatotoxicity: Acetaminophen has been associated with cases of acute liver failure, at times resulting in liver transplant and death. Most of the cases of liver injury are associated with the use of acetaminophen at doses that exceed >4 g/day; and often involve >1 acetaminophen-containing product. Risk is increased with alcohol use, preexisting liver disease, and intake of more than one source of acetaminophen-containing medications.

• Hyperalgesia: Opioid-induced hyperalgesia (OIH) has occurred with short-term and prolonged use of opioid analgesics. Symptoms may include increased levels of pain upon opioid dosage increase, decreased levels of pain upon opioid dosage decrease, or pain from ordinarily nonpainful stimuli; symptoms may be suggestive of OIH if there is no evidence of underlying disease progression, opioid tolerance, opioid withdrawal, or addictive behavior. Consider decreasing the current opioid dose or opioid rotation in patients who experience OIH.

• Hypersensitivity/anaphylactic reactions: Hypersensitivity and anaphylactic reactions have been reported with acetaminophen use; discontinue immediately if symptoms of allergic or hypersensitivity reactions occur.

• Hypotension: May cause severe hypotension (including orthostatic hypotension and syncope); use with caution in patients with hypovolemia, cardiovascular disease (including acute MI), or drugs which may exaggerate hypotensive effects (including phenothiazines or general anesthetics). Avoid use in patients with circulatory shock.

• Phenanthrene hypersensitivity: Use with caution in patients with hypersensitivity reactions to other phenanthrene derivative opioid agonists (codeine, hydromorphone, levorphanol, oxycodone, oxymorphone).

• Respiratory depression: Fatal respiratory depression may occur. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids. Patients and caregivers should be educated on how to recognize respiratory depression and the importance of getting emergency assistance immediately (eg, calling 911) in the event of known or suspected overdose.

• Skin reactions: Rarely, acetaminophen may cause serious and potentially fatal skin reactions such as acute generalized exanthematous pustulosis, Stevens-Johnson syndrome, and toxic epidermal necrolysis. Discontinue treatment if severe skin reactions develop.

Disease-related concerns:

• Abdominal conditions: May obscure diagnosis or clinical course of patients with acute abdominal conditions.

• Adrenocortical insufficiency: Use with caution in patients with adrenocortical insufficiency, including Addison disease. Long-term opioid use may cause secondary hypogonadism, which may lead to mood disorders and osteoporosis (Brennan 2013).

• Biliary tract impairment: Use with caution in patients with biliary tract dysfunction or acute pancreatitis; opioids may cause constriction of sphincter of Oddi.

• CNS depression/coma: Avoid use in patients with impaired consciousness or coma as these patients are susceptible to intracranial effects of CO2 retention.

• Delirium tremens: Use with caution in patients with delirium tremens.

• Ethanol use: Use with caution in patients with alcoholic liver disease; consuming ≥3 alcoholic drinks/day may increase the risk of liver damage.

• G6PD deficiency: Use acetaminophen with caution in patients with known G6PD deficiency.

• Head trauma: Use with extreme caution in patients with head injury, intracranial lesions, or elevated intracranial pressure (ICP); exaggerated elevation of ICP may occur.

• Hepatic impairment: Use with caution in patients with hepatic impairment.

• Mental health conditions: Use opioids with caution for chronic pain in patients with mental health conditions (eg, depression, anxiety disorders, posttraumatic stress disorder) due to potential increased risk for opioid use disorder and overdose; more frequent monitoring is recommended (CDC [Dowell 2022]).

• Obesity: Use with caution in patients who are morbidly obese.

• Prostatic hyperplasia/urinary stricture: Use with caution in patients with prostatic hyperplasia and/or urinary stricture.

• Psychosis: Use with caution in patients with toxic psychosis.

• Renal impairment: Use with caution in patients with renal impairment.

• Respiratory disease: Use opioids with caution and monitor for respiratory depression in patients with significant chronic obstructive pulmonary disease or cor pulmonale, and those having a substantially decreased respiratory reserve, hypoxia, hypercarbia, or preexisting respiratory depression, particularly when initiating therapy and titrating therapy; critical respiratory depression may occur, even at therapeutic dosages. Consider the use of alternative nonopioid analgesics in these patients.

• Seizures: Use with caution in patients with a history of seizure disorders; may cause or exacerbate seizures.

• Sleep-related disorders: Use with caution in patients with sleep-related disorders, including sleep apnea, due to increased risk for respiratory and CNS depression. Monitor carefully and titrate dosage cautiously in patients with mild sleep-disordered breathing. Avoid opioids in patients with moderate to severe sleep-disordered breathing (CDC [Dowell 2022]).

• Thyroid dysfunction: Use with caution in patients with thyroid dysfunction.

Concurrent drug therapy issues:

• Benzodiazepines or other CNS depressants: Concomitant use may result in respiratory depression and sedation, which may be fatal. Consider prescribing naloxone or nalmefene for emergency treatment of opioid overdose in patients taking benzodiazepines or other CNS depressants concomitantly with opioids.

• CYP 3A4 interactions: Use with all CYP3A4 inhibitors may result in an increase in hydrocodone plasma concentrations, which could increase or prolong adverse drug effects and may cause potentially fatal respiratory depression. In addition, discontinuation of a concomitant CYP 3A4 inducer may result in increased hydrocodone concentrations. Monitor patients receiving benzhydrocodone/acetaminophen and any CYP3A4 inhibitor or inducer.

Special populations:

• CYP2D6 poor metabolizers: Due to the role of CYP2D6 in the metabolism of hydrocodone to hydromorphone (an active metabolite with higher binding affinity to mu-opioid receptors compared to hydrocodone), patients with genetic variations of CYP2D6, including poor metabolizers or ultrarapid metabolizers, may have decreased or increased hydromorphone formation, respectively. Variable effects in positive and negative opioid effects have been reported in these patients; however, limited data exists to determine if clinically significant differences in analgesia and toxicity can be predicted based on CYP2D6 phenotype (Hutchinson 2004; Otton 1993; Zhou 2009).

• Cachectic or debilitated patients: Use with caution in cachectic or debilitated patients; there is a greater potential for critical respiratory depression, even at therapeutic dosages. Consider the use of alternative nonopioid analgesics in these patients.

• Older adult: Use opioids with caution in older adults; may be more sensitive to adverse effects. Clearance may also be reduced in older adults (with or without renal impairment) resulting in a narrow therapeutic window and increased adverse effects. Monitor closely for adverse effects associated with opioid therapy (eg, respiratory and CNS depression, falls, cognitive impairment, constipation) (CDC [Dowell 2022]). Consider the use of alternative nonopioid analgesics in these patients when possible.

• Neonates: Neonatal withdrawal syndrome: Signs and symptoms include irritability, hyperactivity and abnormal sleep pattern, high-pitched cry, tremor, vomiting, diarrhea, and failure to gain weight. Onset, duration, and severity depend on the drug used, duration of use, maternal dose, and rate of drug elimination by the newborn.

Other warnings/precautions:

• Abrupt discontinuation/withdrawal: Abrupt discontinuation in patients who are physically dependent to opioids has been associated with serious withdrawal symptoms, uncontrolled pain, attempts to find other opioids (including illicit), and suicide. Use a collaborative, patient-specific taper schedule that minimizes the risk of withdrawal, considering factors such as current opioid dose, duration of use, type of pain, and physical and psychological factors. Monitor pain control, withdrawal symptoms, mood changes, suicidal ideation, and for use of other substances and provide care as needed. Concurrent use of mixed agonist/antagonist analgesics (eg, pentazocine, nalbuphine, butorphanol) or partial agonist (eg, buprenorphine) analgesics may also precipitate withdrawal symptoms and/or reduced analgesic efficacy in patients following prolonged therapy with mu opioid agonists.

• Abuse/misuse/diversion: Use with caution in patients with a history of substance abuse disorder; potential for drug dependency exists. Other factors associated with increased risk for misuse include concomitant depression or other mental health conditions, higher opioid dosages, or taking other CNS depressants. Consider offering naloxone or nalmefene prescriptions in patients with an increased risk for overdose, such as history of overdose or substance use disorder, higher opioid dosages (≥50 morphine milligram equivalents [MME]/day orally), concomitant benzodiazepine use, and patients at risk for returning to a high dose after losing tolerance (CDC [Dowell 2022]).

• Accidental ingestion: Accidental ingestion, especially in children, can result in a fatal overdose of hydrocodone.

• Appropriate use: Outpatient setting: Opioids should not be used as first-line therapy for acute (< 1 month duration), subacute (1 to 3 month duration), or chronic pain (>3 month duration [outside of end-of-life or palliative care, active cancer treatment, sickle cell disease, or medication-based opioid use disorder treatment]). Preferred management includes nonpharmacologic therapy and nonopioid therapy (eg, nonsteroidal anti-inflammatory drugs, acetaminophen, certain antiseizure medications and antidepressants) as appropriate for the specific condition. If opioid therapy is initiated, it should be combined with nonpharmacologic and nonopioid therapy, as appropriate. Prior to initiation, known risks and realistic benefits of opioid therapy should be discussed with the patient. Therapy should be initiated at the lowest effective dosage using IR opioids (instead of ER/long-acting opioids). For the treatment of acute pain, therapy should only be given for the expected duration of pain severe enough to require opioids and prescribed as needed (not scheduled). For the treatment of subacute and chronic pain, realistic treatment goals for pain/function should be established, including consideration for discontinuation if benefits do not outweigh risks. Therapy should be continued only if clinically meaningful improvement in pain/function outweighs risks. Risk to patients increases with higher opioid dosages. Dosages ≥50 MME/day are likely to not have increased benefit to pain relief or function relative to overall risk to patients; before increasing dosage to ≥50 MME/day, readdress pain and reassess evidence of individual benefits and risks (CDC [Dowell 2022]).

• Dosage limit: Limit acetaminophen dose from all sources (prescription and OTC) to <4 g/day.

• Naloxone/Nalmefene access: Discuss the availability of naloxone or nalmefene with all patients who are prescribed opioid analgesics, as well as their caregivers, and consider prescribing it to patients who are at increased risk of opioid overdose. These include patients who are also taking benzodiazepines or other CNS depressants, have an opioid use disorder (OUD) (current or history of), or have experienced opioid-induced respiratory depression/opioid overdose. Additionally, health care providers should consider prescribing naloxone or nalmefene to patients prescribed medications to treat OUD; patients at risk of opioid overdose even if they are not taking an opioid analgesic or medication to treat OUD; and patients taking opioids, including methadone or buprenorphine for OUD, if they have household members, including children, or other close contacts at risk for accidental ingestion or opioid overdose. Inform patients and caregivers on options for obtaining naloxone or nalmefene (eg, by prescription, directly from a pharmacist, a community-based program) as permitted by state dispensing and prescribing guidelines. Educate patients and caregivers on how to recognize respiratory depression, proper administration of naloxone or nalmefene, and getting emergency help.

• Optimal regimen: An opioid-containing analgesic regimen should be tailored to each patient's needs and based upon the type of pain being treated (acute versus chronic), the route of administration, degree of tolerance for opioids (naive versus chronic user), age, weight, and medical condition. The optimal analgesic dose varies widely among patients; doses should be titrated to pain relief/prevention.

• REMS program: To ensure that the benefits of opioid analgesics outweigh the risks of substance use disorder, abuse, and misuse, a REMS is required. Drug companies with approved opioid analgesic products must make REMS-compliant education programs available to health care providers. Health care providers are encouraged to complete a REMS-compliant education program; counsel patients and/or their caregivers, with every prescription, on safe use, serious risks, storage, and disposal of these products; emphasize to patients and their caregivers the importance of reading the Medication Guide every time it is provided by their pharmacist; and consider other tools to improve patient, household, and community safety.

• Surgery: Opioids decrease bowel motility; monitor for decreased bowel motility in postoperative patients receiving opioids. Use with caution in the perioperative setting; individualize treatment when transitioning from parenteral to oral analgesics.

Dosage Forms: US

Excipient information presented when available (limited, particularly for generics); consult specific product labeling.

Tablet, Oral:

Apadaz: Acetaminophen 325 mg and benzhydrocodone hydrochloride 4.08 mg, Acetaminophen 325 mg and benzhydrocodone hydrochloride 6.12 mg, Acetaminophen 325 mg and benzhydrocodone hydrochloride 8.16 mg

Generic: Acetaminophen 325 mg and benzhydrocodone hydrochloride 4.08 mg, Acetaminophen 325 mg and benzhydrocodone hydrochloride 6.12 mg, Acetaminophen 325 mg and benzhydrocodone hydrochloride 8.16 mg

Generic Equivalent Available: US

Yes

Pricing: US

Tablets (Apadaz Oral)

4.08-325 mg (per each): $0.34

6.12-325 mg (per each): $0.36

8.16-325 mg (per each): $0.39

Tablets (Benzhydrocodone-Acetaminophen Oral)

4.08-325 mg (per each): $0.29

6.12-325 mg (per each): $0.31

8.16-325 mg (per each): $0.34

Disclaimer: A representative AWP (Average Wholesale Price) price or price range is provided as reference price only. A range is provided when more than one manufacturer's AWP price is available and uses the low and high price reported by the manufacturers to determine the range. The pricing data should be used for benchmarking purposes only, and as such should not be used alone to set or adjudicate any prices for reimbursement or purchasing functions or considered to be an exact price for a single product and/or manufacturer. Medi-Span expressly disclaims all warranties of any kind or nature, whether express or implied, and assumes no liability with respect to accuracy of price or price range data published in its solutions. In no event shall Medi-Span be liable for special, indirect, incidental, or consequential damages arising from use of price or price range data. Pricing data is updated monthly.

Controlled Substance

C-II

Administration: Adult

Oral: Administer without regard to food.

Medication Guide and/or Vaccine Information Statement (VIS)

An FDA-approved patient medication guide, which is available with the product information and at https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/208653s000lbl.pdf#page=35, must be dispensed with this medication.

Use: Labeled Indications

Pain management: Short-term (≤14 days) management of acute pain severe enough to require an opioid analgesic and for which alternative treatments are inadequate.

Limitations of use: Because of the risks of substance use disorder, abuse, and misuse with opioids, which may occur at any dosage or duration, reserve benzhydrocodone and acetaminophen for use in patients for whom alternative treatment options (eg, nonopioid analgesics) have not been tolerated, or are not expected to be tolerated; have not provided adequate analgesia, or are not expected to provide adequate analgesia. Not intended to be used for an extended period of time unless the pain remains severe enough to require an opioid analgesic and for which alternative treatment options continue to be inadequate.

Medication Safety Issues
Sound-alike/look-alike issues:

Benzhydrocodone and Acetaminophen may be confused with Hydrocodone and Acetaminophen

High alert medication:

The Institute for Safe Medication Practices (ISMP) includes this medication among its list of drug classes (opioids, all formulations and routes of administration) which have a heightened risk of causing significant patient harm when used in error (High-Alert Medications in Acute Care, Community/Ambulatory Care, and Long-Term Care Settings).

Other safety concerns:

Duplicate therapy issues: This product contains acetaminophen, which may be a component of other combination products. Do not exceed the maximum recommended daily dose of acetaminophen.

Metabolism/Transport Effects

Refer to individual components.

Drug Interactions

Note: Interacting drugs may not be individually listed below if they are part of a group interaction (eg, individual drugs within “CYP3A4 Inducers [Strong]” are NOT listed). For a complete list of drug interactions by individual drug name and detailed management recommendations, use the drug interactions program by clicking on the “Launch drug interactions program” link above.

Agents with Clinically Relevant Anticholinergic Effects: May increase adverse/toxic effects of Opioid Agonists. Specifically, the risk for constipation and urinary retention may be increased with this combination. Risk C: Monitor

Alizapride: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Alvimopan: Opioid Agonists may increase adverse/toxic effects of Alvimopan. This is most notable for patients receiving long-term (i.e., more than 7 days) opiates prior to alvimopan initiation. Management: Alvimopan is contraindicated in patients receiving therapeutic doses of opioids for more than 7 consecutive days immediately prior to alvimopan initiation. Risk D: Consider Therapy Modification

Amisulpride (Oral): May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Amphetamines: May increase analgesic effects of Opioid Agonists. Risk C: Monitor

Articaine: May increase CNS depressant effects of CNS Depressants. Management: Consider reducing the dose of articaine if possible when used in patients who are also receiving CNS depressants. Monitor for excessive CNS depressant effects with any combined use. Risk D: Consider Therapy Modification

Atazanavir: May increase serum concentration of UGT1A1 Substrates. Management: Do not use UGT1A1 substrates for which small increases in exposure can cause serious adverse effects together with atazanavir, and use caution with any UGT1A1 substrate, even when small changes in exposure are less likely to cause serious adverse effects. Risk D: Consider Therapy Modification

Azelastine (Nasal): May increase CNS depressant effects of CNS Depressants. Risk X: Avoid

Belumosudil: May increase serum concentration of UGT1A1 Substrates. Management: Avoid coadministration of belumosudil with substrates of UGT1A1 for which minimal concentration increases can cause serious adverse effects. If coadministration is required, dose reductions of the UGT1A1 substrate may be required. Risk D: Consider Therapy Modification

Benperidol: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Blonanserin: CNS Depressants may increase CNS depressant effects of Blonanserin. Management: Use caution if coadministering blonanserin and CNS depressants; dose reduction of the other CNS depressant may be required. Strong CNS depressants should not be coadministered with blonanserin. Risk D: Consider Therapy Modification

Brimonidine (Topical): May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Bromopride: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Bromperidol: May increase CNS depressant effects of CNS Depressants. Risk X: Avoid

Buclizine: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Buprenorphine: CNS Depressants may increase CNS depressant effects of Buprenorphine. Management: Consider reduced doses of other CNS depressants, and avoiding such drugs in patients at high risk of buprenorphine overuse/self-injection. Initiate buprenorphine at lower doses in patients already receiving CNS depressants. Risk D: Consider Therapy Modification

Buprenorphine: May decrease therapeutic effects of Opioid Agonists. Management: Seek alternatives to buprenorphine in patients receiving pure opioid agonists. If combined in certain pain management situations (eg, surgery), monitor for symptoms of therapeutic failure/high dose requirements or opioid withdrawal symptoms. Risk D: Consider Therapy Modification

BusPIRone: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Busulfan: Acetaminophen may increase serum concentration of Busulfan. Risk C: Monitor

Cannabinoid-Containing Products: CNS Depressants may increase CNS depressant effects of Cannabinoid-Containing Products. Risk C: Monitor

CarBAMazepine: May increase metabolism of Acetaminophen. This may 1) diminish the effect of acetaminophen; and 2) increase the risk of liver damage. Risk C: Monitor

Cetirizine (Systemic): May increase CNS depressant effects of CNS Depressants. Management: Consider avoiding this combination if possible. If required, monitor for excessive sedation or CNS depression, limit the dose and duration of combination therapy, and consider CNS depressant dose reductions. Risk D: Consider Therapy Modification

Chloral Hydrate/Chloral Betaine: CNS Depressants may increase CNS depressant effects of Chloral Hydrate/Chloral Betaine. Management: Consider alternatives to the use of chloral hydrate or chloral betaine and additional CNS depressants. If combined, consider a dose reduction of either agent and monitor closely for enhanced CNS depressive effects. Risk D: Consider Therapy Modification

Chlormethiazole: May increase CNS depressant effects of CNS Depressants. Management: Monitor closely for evidence of excessive CNS depression. The chlormethiazole labeling states that an appropriately reduced dose should be used if such a combination must be used. Risk D: Consider Therapy Modification

Chlorphenesin Carbamate: May increase adverse/toxic effects of CNS Depressants. Risk C: Monitor

Clofazimine: May increase serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Risk C: Monitor

CNS Depressants: May increase CNS depressant effects of Opioid Agonists. Management: Avoid concomitant use of opioid agonists and benzodiazepines or other CNS depressants when possible. These agents should only be combined if alternative treatment options are inadequate. If combined, limit the dosages and duration of each drug. Risk D: Consider Therapy Modification

CYP2D6 Inhibitors (Strong): May decrease active metabolite exposure of Benzhydrocodone. Risk C: Monitor

CYP3A4 Inducers (Moderate): May decrease serum concentration of Benzhydrocodone. Specifically, the serum concentrations of hydrocodone may be reduced. Risk C: Monitor

CYP3A4 Inducers (Strong): May decrease serum concentration of Benzhydrocodone. Specifically, the serum concentrations of hydrocodone may be reduced. Risk C: Monitor

CYP3A4 Inhibitors (Moderate): May increase serum concentration of Benzhydrocodone. Specifically, the concentration of hydrocodone may be increased. Risk C: Monitor

CYP3A4 Inhibitors (Strong): May increase serum concentration of Benzhydrocodone. Specifically, the concentration of hydrocodone may be increased. Risk C: Monitor

Dapsone (Topical): May increase adverse/toxic effects of Methemoglobinemia Associated Agents. Risk C: Monitor

Daridorexant: May increase CNS depressant effects of CNS Depressants. Management: Dose reduction of daridorexant and/or any other CNS depressant may be necessary. Use of daridorexant with alcohol is not recommended, and the use of daridorexant with any other drug to treat insomnia is not recommended. Risk D: Consider Therapy Modification

Dasatinib: Acetaminophen may increase hepatotoxic effects of Dasatinib. Dasatinib may increase serum concentration of Acetaminophen. Management: Avoid coadministration of acetaminophen and dasatinib if possible. If coadministration is unavoidable, monitor for signs/symptoms of hepatotoxicity, particularly in patients with greater acetaminophen exposure. Risk D: Consider Therapy Modification

Desmopressin: Opioid Agonists may increase hyponatremic effects of Desmopressin. Risk C: Monitor

DexmedeTOMIDine: CNS Depressants may increase CNS depressant effects of DexmedeTOMIDine. Management: Monitor for increased CNS depression during coadministration of dexmedetomidine and CNS depressants, and consider dose reductions of either agent to avoid excessive CNS depression. Risk D: Consider Therapy Modification

Difelikefalin: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Dihydralazine: CNS Depressants may increase hypotensive effects of Dihydralazine. Risk C: Monitor

Dimethindene (Topical): May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Diuretics: Opioid Agonists may increase adverse/toxic effects of Diuretics. Opioid Agonists may decrease therapeutic effects of Diuretics. Risk C: Monitor

Dothiepin: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

DroPERidol: May increase CNS depressant effects of CNS Depressants. Management: Consider dose reductions of droperidol or of other CNS agents (eg, opioids, barbiturates) with concomitant use. Risk D: Consider Therapy Modification

Eluxadoline: Opioid Agonists may increase constipating effects of Eluxadoline. Risk X: Avoid

Emedastine (Systemic): May increase CNS depressant effects of CNS Depressants. Management: Consider avoiding this combination if possible. If required, monitor for excessive sedation or CNS depression, limit the dose and duration of combination therapy, and consider CNS depressant dose reductions. Risk C: Monitor

Entacapone: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Flucloxacillin: May increase adverse/toxic effects of Acetaminophen. Specifically, the risk for high anion gap metabolic acidosis may be increased. Risk C: Monitor

Flunarizine: CNS Depressants may increase CNS depressant effects of Flunarizine. Risk X: Avoid

Flunitrazepam: CNS Depressants may increase CNS depressant effects of Flunitrazepam. Management: Reduce the dose of CNS depressants when combined with flunitrazepam and monitor patients for evidence of CNS depression (eg, sedation, respiratory depression). Use non-CNS depressant alternatives when available. Risk D: Consider Therapy Modification

Fosphenytoin-Phenytoin: May decrease serum concentration of Acetaminophen. Specifically, serum concentrations of acetaminophen may be decreased (leading to decreased efficacy), but the formation of the toxic N-acetyl-p-benzoquinone imine (NAPQI) metabolite may be increased (leading to increased hepatotoxicity). Risk C: Monitor

Fusidic Acid (Systemic): May increase serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Management: Consider avoiding this combination if possible. If required, monitor patients closely for increased adverse effects of the CYP3A4 substrate. Risk D: Consider Therapy Modification

Gastrointestinal Agents (Prokinetic): Opioid Agonists may decrease therapeutic effects of Gastrointestinal Agents (Prokinetic). Risk C: Monitor

Grapefruit Juice: May increase serum concentration of Benzhydrocodone. Specifically, the concentration of hydrocodone may be increased. Risk C: Monitor

HydrOXYzine: May increase CNS depressant effects of CNS Depressants. Management: Consider a decrease in the CNS depressant dose, as appropriate, when used together with hydroxyzine. Increase monitoring of signs/symptoms of CNS depression in any patient receiving hydroxyzine together with another CNS depressant. Risk D: Consider Therapy Modification

Imatinib: Acetaminophen may increase hepatotoxic effects of Imatinib. Risk C: Monitor

Immune Checkpoint Inhibitors (Anti-PD-1, -PD-L1, and -CTLA4 Therapies): Acetaminophen may decrease therapeutic effects of Immune Checkpoint Inhibitors (Anti-PD-1, -PD-L1, and -CTLA4 Therapies). Risk C: Monitor

Isoniazid: May increase hepatotoxic effects of Acetaminophen. Isoniazid may increase metabolism of Acetaminophen. Specifically, formation of the hepatotoxic NAPQI metabolite may be increased. Risk C: Monitor

Ixabepilone: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Kava Kava: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Ketotifen (Systemic): May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Kratom: May increase CNS depressant effects of CNS Depressants. Risk X: Avoid

LamoTRIgine: Acetaminophen may decrease serum concentration of LamoTRIgine. Risk C: Monitor

Lemborexant: May increase CNS depressant effects of CNS Depressants. Management: Dosage adjustments of lemborexant and of concomitant CNS depressants may be necessary when administered together because of potentially additive CNS depressant effects. Close monitoring for CNS depressant effects is necessary. Risk D: Consider Therapy Modification

Levocetirizine: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Lisuride: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Local Anesthetics: Methemoglobinemia Associated Agents may increase adverse/toxic effects of Local Anesthetics. Specifically, the risk for methemoglobinemia may be increased. Risk C: Monitor

Lofexidine: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Lorlatinib: May decrease serum concentration of Acetaminophen. Risk C: Monitor

Loxapine: CNS Depressants may increase CNS depressant effects of Loxapine. Management: Consider reducing the dose of CNS depressants administered concomitantly with loxapine due to an increased risk of respiratory depression, sedation, hypotension, and syncope. Risk D: Consider Therapy Modification

Magnesium Sulfate: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Mequitazine: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Metergoline: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Methotrimeprazine: CNS Depressants may increase CNS depressant effects of Methotrimeprazine. Methotrimeprazine may increase CNS depressant effects of CNS Depressants. Management: Reduce the usual dose of CNS depressants by 50% if starting methotrimeprazine until the dose of methotrimeprazine is stable. Monitor patient closely for evidence of CNS depression. Risk D: Consider Therapy Modification

Metoclopramide: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

MetyraPONE: May increase serum concentration of Acetaminophen. More importantly, by inhibiting the conjugative metabolism of acetaminophen, metyrapone may shift the metabolism towards the oxidative route that produces a hepatotoxic metabolite. Risk X: Avoid

MetyroSINE: CNS Depressants may increase sedative effects of MetyroSINE. Risk C: Monitor

Minocycline (Systemic): May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Mitapivat: May decrease serum concentration of UGT1A1 Substrates. Risk C: Monitor

Monoamine Oxidase Inhibitors: Benzhydrocodone may increase serotonergic effects of Monoamine Oxidase Inhibitors. This could result in serotonin syndrome. Management: The use of benzhydrocodone is not recommended for patients taking monoamine oxidase inhibitors (MAOIs) or within 14 days of MAOI discontinuation. If coadministration is required, use test doses and frequent titration of small benzhydrocodone. Risk D: Consider Therapy Modification

Moxonidine: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Nabilone: May increase CNS depressant effects of CNS Depressants. Risk X: Avoid

Nalfurafine: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Nalfurafine: Opioid Agonists may increase adverse/toxic effects of Nalfurafine. Opioid Agonists may decrease therapeutic effects of Nalfurafine. Risk C: Monitor

Nalmefene: May decrease therapeutic effects of Opioid Agonists. Management: Avoid the concomitant use of oral nalmefene and opioid agonists. Discontinue oral nalmefene 1 week prior to any anticipated use of opioid agonists. If combined, larger doses of opioid agonists will likely be required. Risk D: Consider Therapy Modification

Naltrexone: May decrease therapeutic effects of Opioid Agonists. Management: Seek therapeutic alternatives to opioids. See full drug interaction monograph for detailed recommendations. Risk X: Avoid

Nefazodone: Opioid Agonists (metabolized by CYP3A4 and CYP2D6) may increase serotonergic effects of Nefazodone. This could result in serotonin syndrome. Nefazodone may increase serum concentration of Opioid Agonists (metabolized by CYP3A4 and CYP2D6). Management: Monitor for increased opioid effects, including fatal respiratory depression, when these agents are combined and consider opioid dose reductions until stable drug effects are achieved. Additionally, monitor for serotonin syndrome/serotonin toxicity. Risk C: Monitor

Nitric Oxide: May increase adverse/toxic effects of Methemoglobinemia Associated Agents. Combinations of these agents may increase the likelihood of significant methemoglobinemia. Risk C: Monitor

Noscapine: CNS Depressants may increase adverse/toxic effects of Noscapine. Risk X: Avoid

Olopatadine (Nasal): May increase CNS depressant effects of CNS Depressants. Risk X: Avoid

Opicapone: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Opioid Agonists: CNS Depressants may increase CNS depressant effects of Opioid Agonists. Management: Avoid concomitant use of opioid agonists and benzodiazepines or other CNS depressants when possible. These agents should only be combined if alternative treatment options are inadequate. If combined, limit the dosages and duration of each drug. Risk D: Consider Therapy Modification

Opioids (Mixed Agonist / Antagonist): May decrease analgesic effects of Opioid Agonists. Management: Seek alternatives to mixed agonist/antagonist opioids in patients receiving pure opioid agonists, and monitor for symptoms of therapeutic failure/high dose requirements (or withdrawal in opioid-dependent patients) if patients receive these combinations. Risk X: Avoid

Opipramol: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Orphenadrine: CNS Depressants may increase CNS depressant effects of Orphenadrine. Risk X: Avoid

Oxomemazine: May increase CNS depressant effects of CNS Depressants. Risk X: Avoid

Oxybate Salt Products: CNS Depressants may increase CNS depressant effects of Oxybate Salt Products. Management: Consider alternatives to this combination when possible. If combined, dose reduction or discontinuation of one or more CNS depressants (including the oxybate salt product) should be considered. Interrupt oxybate salt treatment during short-term opioid use Risk D: Consider Therapy Modification

OxyCODONE: CNS Depressants may increase CNS depressant effects of OxyCODONE. Management: Avoid concomitant use of oxycodone and benzodiazepines or other CNS depressants when possible. These agents should only be combined if alternative treatment options are inadequate. If combined, limit the dosages and duration of each drug. Risk D: Consider Therapy Modification

Paraldehyde: CNS Depressants may increase CNS depressant effects of Paraldehyde. Risk X: Avoid

Pegvisomant: Opioid Agonists may decrease therapeutic effects of Pegvisomant. Risk C: Monitor

Periciazine: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

PHENobarbital: May increase CNS depressant effects of Benzhydrocodone. PHENobarbital may decrease active metabolite exposure of Benzhydrocodone. Specifically, phenobarbital may decrease serum concentrations of hydrocodone. Management: Avoid use of benzhydrocodone and phenobarbital when possible. Monitor for respiratory depression/sedation. Because phenobarbital is also a moderate CYP3A4 inducer, monitor for decreased benzhydrocodone efficacy and withdrawal if combined. Risk D: Consider Therapy Modification

Phenylephrine (Systemic): Acetaminophen may increase serum concentration of Phenylephrine (Systemic). Risk C: Monitor

Pipamperone: May increase adverse/toxic effects of CNS Depressants. Risk C: Monitor

Piribedil: CNS Depressants may increase CNS depressant effects of Piribedil. Risk C: Monitor

Pramipexole: CNS Depressants may increase sedative effects of Pramipexole. Risk C: Monitor

Prilocaine: Methemoglobinemia Associated Agents may increase adverse/toxic effects of Prilocaine. Combinations of these agents may increase the likelihood of significant methemoglobinemia. Management: Monitor for signs of methemoglobinemia when prilocaine is used in combination with other agents associated with development of methemoglobinemia. Avoid use of these agents with prilocaine/lidocaine cream in infants less than 12 months of age. Risk C: Monitor

Primaquine: Methemoglobinemia Associated Agents may increase adverse/toxic effects of Primaquine. Specifically, the risk for methemoglobinemia may be increased. Management: Avoid concomitant use of primaquine and other drugs that are associated with methemoglobinemia when possible. If combined, monitor methemoglobin levels closely. Risk D: Consider Therapy Modification

Primidone: May increase CNS depressant effects of Benzhydrocodone. Primidone may decrease active metabolite exposure of Benzhydrocodone. Specifically, serum concentrations of hydrocodone may be decreased. Management: Avoid use of benzhydrocodone and primidonel when possible. Monitor for respiratory depression/sedation. Because primidone is also a moderate CYP3A4 inducer, monitor for decreased benzhydrocodone efficacy and withdrawal if combined. Risk D: Consider Therapy Modification

Probenecid: May increase serum concentration of Acetaminophen. Probenecid may also limit the formation of at least one major non-toxic metabolite, possibly increasing the potential for formation of the toxic NAPQI metabolite. Management: Consider limiting acetaminophen use in combination with probenecid. Probenecid may reduce clearance of acetaminophen to one of its non-toxic metabolities, increasing the risk for acetaminophen toxicity, even a lower doses. Risk D: Consider Therapy Modification

Procarbazine: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Ramosetron: Opioid Agonists may increase constipating effects of Ramosetron. Risk C: Monitor

RifAMPin: May increase hepatotoxic effects of Acetaminophen. RifAMPin may decrease serum concentration of Acetaminophen. Risk C: Monitor

Rilmenidine: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Ropeginterferon Alfa-2b: CNS Depressants may increase adverse/toxic effects of Ropeginterferon Alfa-2b. Specifically, the risk of neuropsychiatric adverse effects may be increased. Management: Avoid coadministration of ropeginterferon alfa-2b and other CNS depressants. If this combination cannot be avoided, monitor patients for neuropsychiatric adverse effects (eg, depression, suicidal ideation, aggression, mania). Risk D: Consider Therapy Modification

ROPINIRole: CNS Depressants may increase sedative effects of ROPINIRole. Risk C: Monitor

Rotigotine: CNS Depressants may increase sedative effects of Rotigotine. Risk C: Monitor

Samidorphan: May decrease therapeutic effects of Opioid Agonists. Risk X: Avoid

Selective Serotonin Reuptake Inhibitors (Strong CYP2D6 Inhibitors): Opioid Agonists (metabolized by CYP3A4 and CYP2D6) may increase serotonergic effects of Selective Serotonin Reuptake Inhibitors (Strong CYP2D6 Inhibitors). This could result in serotonin syndrome. Selective Serotonin Reuptake Inhibitors (Strong CYP2D6 Inhibitors) may decrease therapeutic effects of Opioid Agonists (metabolized by CYP3A4 and CYP2D6). Management: Monitor for decreased therapeutic response (eg, analgesia) and opioid withdrawal when coadministered with SSRIs that strongly inhibit CYP2D6. Additionally, monitor for serotonin syndrome/serotonin toxicity if these drugs are combined. Risk C: Monitor

Serotonergic Agents (High Risk): Opioid Agonists (metabolized by CYP3A4 and CYP2D6) may increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor

Sincalide: Drugs that Affect Gallbladder Function may decrease therapeutic effects of Sincalide. Management: Consider discontinuing drugs that may affect gallbladder motility prior to the use of sincalide to stimulate gallbladder contraction. Risk D: Consider Therapy Modification

Sodium Nitrite: Methemoglobinemia Associated Agents may increase adverse/toxic effects of Sodium Nitrite. Combinations of these agents may increase the likelihood of significant methemoglobinemia. Risk C: Monitor

Somatostatin Analogs: Opioid Agonists may decrease analgesic effects of Somatostatin Analogs. Opioid Agonists may increase analgesic effects of Somatostatin Analogs. Risk C: Monitor

SORAfenib: Acetaminophen may increase hepatotoxic effects of SORAfenib. SORAfenib may increase serum concentration of Acetaminophen. Management: Avoid coadministration of acetaminophen and sorafenib if possible. If coadministration is unavoidable, monitor for signs/symptoms of hepatotoxicity, particularly in patients with greater acetaminophen exposure. Risk D: Consider Therapy Modification

Succinylcholine: May increase bradycardic effects of Opioid Agonists. Risk C: Monitor

Suvorexant: CNS Depressants may increase CNS depressant effects of Suvorexant. Management: Dose reduction of suvorexant and/or any other CNS depressant may be necessary. Use of suvorexant with alcohol is not recommended, and the use of suvorexant with any other drug to treat insomnia is not recommended. Risk D: Consider Therapy Modification

Thalidomide: CNS Depressants may increase CNS depressant effects of Thalidomide. Risk X: Avoid

Tilidine: May increase therapeutic effects of Opioid Agonists. Risk X: Avoid

Vaccines: Acetaminophen may decrease therapeutic effects of Vaccines. Management: Consider avoiding routine prophylactic use of acetaminophen before or during vaccine administration when possible. Acetaminophen is still recommended to treat fevers and/or pain that occurs after vaccination. Risk D: Consider Therapy Modification

Valerian: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor

Vitamin K Antagonists: Acetaminophen may increase anticoagulant effects of Vitamin K Antagonists. This appears most likely with daily acetaminophen doses exceeding 1.3 or 2 g/day for multiple consecutive days. Risk C: Monitor

Zolpidem: CNS Depressants may increase CNS depressant effects of Zolpidem. Management: Reduce the Intermezzo brand sublingual zolpidem adult dose to 1.75 mg for men who are also receiving other CNS depressants. No such dose change is recommended for women. Avoid use with other CNS depressants at bedtime; avoid use with alcohol. Risk D: Consider Therapy Modification

Zuranolone: May increase CNS depressant effects of CNS Depressants. Management: Consider alternatives to the use of zuranolone with other CNS depressants or alcohol. If combined, consider a zuranolone dose reduction and monitor patients closely for increased CNS depressant effects. Risk D: Consider Therapy Modification

Food Interactions

Refer to the individual Acetaminophen and Hydrocodone monographs.

Reproductive Considerations

Long-term opioid use may cause secondary hypogonadism, which may lead to sexual dysfunction and infertility (Brennan 2013).

Pregnancy Considerations

[US Boxed Warning]: If opioid use is required for an extended period of time in a pregnant woman, advise the patient of the risk of neonatal opioid withdrawal syndrome (NOWS), which may be life-threatening if not recognized and treated. Ensure that management by neonatology experts will be available at delivery.

Also refer to the individual Acetaminophen and Hydrocodone monographs.

Breastfeeding Considerations

Acetaminophen and hydrocodone are present in breast milk. According to the manufacturer, the decision to breastfeed during therapy should consider the risk of infant exposure, the benefits of breastfeeding to the infant, and benefits of treatment to the mother.

Also refer to the individual Acetaminophen and Hydrocodone monographs.

Monitoring Parameters

Pain relief, respiratory and mental status, blood pressure; bowel function; signs/symptoms of misuse, abuse, and substance use disorder.

Alternate recommendations: Subacute or chronic pain (long-term therapy outside of end-of-life or palliative care, active cancer treatment, sickle cell disease, or medication-based opioid use disorder treatment): Evaluate benefits/risks of opioid therapy within 1 to 4 weeks of treatment initiation and with dose increases. In patients with subacute pain initially treated for acute pain, reassess pain and function after 30 days to address potentially reversible causes of pain and prevent unintentional long-term opioid therapy. In patients on long-term therapy, re-evaluate benefits/risks every 3 months during therapy or more frequently in patients at increased risk of overdose or opioid use disorder. Toxicology testing is recommended prior to initiation and at least yearly (includes controlled prescription medications, illicit drugs of abuse, and benzodiazepines). State prescription drug monitoring program (PDMP) data should be reviewed by clinicians prior to initiation and periodically during therapy (frequency ranging from every prescription to every 3 months) (CDC [Dowell 2022]).

Mechanism of Action

Benzhydrocodone: Prodrug of hydrocodone; binds to opiate receptors in the CNS, altering the perception of and response to pain; suppresses cough in medullary center; produces generalized CNS depression.

Acetaminophen: Although not fully elucidated, the analgesic effects are believed to be due to activation of descending serotonergic inhibitory pathways in the central nervous system. Interactions with other nociceptive systems may be involved as well (Smith 2009). Antipyresis is produced from inhibition of the hypothalamic heat-regulating center.

Pharmacokinetics (Adult Data Unless Noted)

Refer to the individual Acetaminophen and Hydrocodone monographs.

Brand Names: International
International Brand Names by Country
For country code abbreviations (show table)

  • (PR) Puerto Rico: Benzhydrocodone and acetaminophen
  1. 2023 American Geriatrics Society Beers Criteria Update Expert Panel. American Geriatrics Society 2023 updated AGS Beers Criteria for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2023;71(7):2052-2081. doi:10.1111/jgs.18372 [PubMed 37139824]
  2. Apadaz (benzhydrocodone/acetaminophen) [prescribing information]. Newton, PA: KVK-Tech, Inc; December 2023.
  3. Brennan MJ. The effect of opioid therapy on endocrine function. Am J Med. 2013;126(3)(suppl 1):S12-S18. doi:10.1016/j.amjmed.2012.12.001 [PubMed 23414717]
  4. Centers for Disease Control and Prevention (CDC). Common elements in guidelines for prescribing opioids for chronic pain. https://www.cdc.gov/drugoverdose/pdf/common_elements_in_guidelines_for_prescribing_opioids-a.pdf. Published 2015. Accessed November 20, 2022.
  5. Chou R, Gordon DB, de Leon-Casasola OA, et al. Management of Postoperative Pain: a clinical practice guideline from the American Pain Society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists' Committee on Regional Anesthesia, Executive Committee, and Administrative Council. J Pain. 2016;17(2):131-157. doi:10.1016/j.jpain.2015.12.008 [PubMed 26827847]
  6. Dowell D, Ragan KR, Jones CM, Baldwin GT, Chou R. CDC clinical practice guideline for prescribing opioids for pain - United States, 2022. MMWR Recomm Rep. 2022;71(3):1-95. doi:10.15585/mmwr.rr7103a1 [PubMed 36327391]
  7. Hill MV, Stucke RS, McMahon ML, Beeman JL, Barth RJ Jr. An educational intervention decreases opioid prescribing after general surgical operations. Ann Surg. 2018;267(3):468-472. doi:10.1097/SLA.0000000000002198 [PubMed 28267689]
  8. Hutchinson MR, Menelaou A, Foster DJ, et al. CYP2D6 and CYP3A4 involvement in the primary oxidative metabolism of hydrocodone by human liver microsomes. Br J Clin Pharmacol. 2004;57(3):287-297. [PubMed 14998425]
  9. Otton SV, Schadel M, Cheung SW, et al. CYP2D6 phenotype determines the metabolic conversion of hydrocodone to hydromorphone. Clin Pharmacol Ther. 1993;54(5):463-472. [PubMed 7693389]
  10. Principles of Analgesic Use in the Treatment of Acute Pain and Cancer Pain. 6th ed. American Pain Society; 2008.
  11. Refer to manufacturer's labeling.
  12. Smith HS. Potential analgesic mechanisms of acetaminophen. Pain Physician. 2009;12(1):269-280. [PubMed 19165309]
  13. US Food and Drug Administration (FDA). FDA drug safety communication: FDA updates prescribing information for all opioid pain medicines to provide additional guidance for safe use. https://www.fda.gov/drugs/drug-safety-and-availability/fda-updates-prescribing-information-all-opioid-pain-medicines-provide-additional-guidance-safe-use. Published April 13, 2023. Accessed April 17, 2023.
  14. US Food and Drug Administration (FDA). Postmarket drug safety information for patients and providers: information about naloxone and nalmefene. https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/information-about-naloxone-and-nalmefene. Published April 22, 2024. Accessed August 7, 2024.
  15. Zhou SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part II. Clin Pharmacokinet. 2009;48(12):761-804. [PubMed 19902987]
Topic 116970 Version 163.0