ﺑﺎﺯﮔﺸﺖ ﺑﻪ ﺻﻔﺤﻪ ﻗﺒﻠﯽ
خرید پکیج
تعداد آیتم قابل مشاهده باقیمانده : 3 مورد
نسخه الکترونیک
medimedia.ir

Meropenem: Pediatric drug information

Meropenem: Pediatric drug information
(For additional information see "Meropenem: Drug information" and see "Meropenem: Patient drug information")

For abbreviations, symbols, and age group definitions used in Lexicomp (show table)
Brand Names: US
  • Merrem [DSC]
Brand Names: Canada
  • TARO-Meropenem
Therapeutic Category
  • Antibiotic, Carbapenem
Dosing: Neonatal

General dosing, non-CNS involvement: Limited data available:

Susceptible infection (expected or known pathogen with susceptible minimum inhibitory concentration [MIC]):

Gestational age-directed dosing (Ref): Preterm and term neonates: IV:

Gestational Age

Postnatal Age

Dose

<32 weeks

<14 days

20 mg/kg/dose every 12 hours

≥14 days

20 mg/kg/dose every 8 hours

≥32 weeks

<14 days

20 mg/kg/dose every 8 hours

≥14 days

30 mg/kg/dose every 8 hours

Weight-directed dosing (Ref): Preterm and term neonates: IV:

Body Weight

Postnatal Age

Dose

≤2 kg

≤14 days

20 mg/kg/dose every 12 hours

15 to 28 days

20 mg/kg/dose every 8 hours

29 to 60 days

30 mg/kg/dose every 8 hours

>2 kg

≤14 days

20 mg/kg/dose every 8 hours

15 to 60 days

30 mg/kg/dose every 8 hours

Pathogen with elevated MIC (ie, 4 to 8 mg/L) (Ref): Note: May consider administering as a 4-hour infusion (Ref).

Preterm and term neonates: IV:

Body Weight

Postnatal Age

Dose

≤2 kg

≤14 days

40 mg/kg/dose every 12 hours

15 to 60 days

40 mg/kg/dose every 8 hours

>2 kg

≤60 days

40 mg/kg/dose every 8 hours

Anthrax

Anthrax (Ref): Note: Consult public health officials for event-specific recommendations; after completion of therapy, initiate antimicrobial prophylaxis to complete an antimicrobial course of 60 days from onset of illness.

Systemic, excluding meningitis: Limited data available: Note: Use as part of an appropriate combination regimen; may switch to oral follow-up therapy when signs and symptoms of active infection are resolved; complete 2 to 3 weeks of therapy or continue until clinical improvement, whichever is longer.

Preterm and term neonates: IV: Note: Dosing applicable to PMA ≤44 weeks.

Gestational Age

Postnatal Age

Dose

32 to <34 weeks

<1 week

13.3 mg/kg/dose every 8 hours

≥1 week

20 mg/kg/dose every 8 hours

≥34 weeks

All

20 mg/kg/dose every 8 hours

Meningitis or disseminated infection in which meningitis cannot be ruled out: Limited data available: Note: Use as part of an appropriate combination regimen for 2 to 3 weeks or until patient is clinically stable, whichever is longer.

Preterm and term neonates: IV: Note: Dosing applicable to PMA ≤44 weeks.

Gestational Age

Postnatal Age

Dose

≥32 weeks

<1 week

20 mg/kg/dose every 8 hours

≥1 week

30 mg/kg/dose every 8 hours

Intra-abdominal infection, complicated

Intra-abdominal infection, complicated: Preterm and term neonates: IV:

Gestational Age

Postnatal Age

Dose

<32 weeks

<14 days

20 mg/kg/dose every 12 hours

≥14 days

20 mg/kg/dose every 8 hours

≥32 weeks

<14 days

20 mg/kg/dose every 8 hours

≥14 days

30 mg/kg/dose every 8 hours

Late-onset sepsis, non-CNS involvement

Late-onset sepsis, non-CNS involvement (empiric): Limited data available:

Traditional intermittent-infusion method (eg 30-minute infusion) (Ref): Preterm and term neonates: IV:

Gestational Age

Postnatal Age

Dose

<32 weeks

<14 days

20 mg/kg/dose every 12 hours

14 to 90 days

20 mg/kg/dose every 8 hours

≥32 weeks

≤90 days

20 mg/kg/dose every 8 hours

Extended-infusion method (eg, 4-hour infusion): Limited data available: Preterm and term neonates: IV: 20 mg/kg/dose every 8 hours, infused over 4 hours. Increase dose to 40 mg/kg/dose every 8 hours for pseudomonal infection or if meningitis is a possibility. Dosing based on a prospective study in which neonates (n=102) with late-onset sepsis were randomized to receive either extended 4-hour infusions (n=51) or traditional 30-minute infusions; mortality was lower in the extended-infusion group (14% vs 31%, P=0.03), with lower incidence of acute kidney injury (6% vs 23.5%, P=0.02) and similar rates of other adverse reactions (Ref). However, a pharmacokinetic model predicted lower cerebrospinal fluid concentrations with continuous infusions; clinical significance unknown (Ref).

Meningitis

Meningitis: Limited data available (Ref); Note: Duration depends on patient-specific factors, clinical response, and pathogen being treated; for gram-negative meningitis, treat for ≥21 days; longer durations may be necessary for prolonged or complicated courses (Ref).

Gestational age-directed dosing: Note: Dosing based on a pharmacokinetic modeling study; model predicted lower cerebrospinal fluid concentrations with continuous infusions compared to intermittent infusions over 30 minutes; clinical significance unknown (Ref).

Preterm and term neonates: IV:

Gestational Age

Postnatal Age

Dose

<32 weeks

<14 days

40 mg/kg/dose every 12 hours

14 to 90 days

40 mg/kg/dose every 8 hours

≥32 weeks

≤90 days

40 mg/kg/dose every 8 hours

Weight-directed dosing (Ref): Preterm and term neonates: IV:

Body Weight

Postnatal Age

Dose

≤2 kg

≤14 days

40 mg/kg/dose every 12 hours

15 to 60 days

40 mg/kg/dose every 8 hours

>2 kg

≤60 days

40 mg/kg/dose every 8 hours

Dosing: Pediatric

General dosing, susceptible infection (non-CNS): Infants, Children, and Adolescents: IV: 20 mg/kg/dose every 8 hours; maximum dose: 1,000 mg/dose; extended infusions may be needed for infections due to isolates with elevated MICs (Ref).

Anthrax

Anthrax (Ref): Infants, Children, and Adolescents: Note: Consult public health officials for event-specific recommendations; after completion of therapy, initiate antimicrobial prophylaxis to complete an antimicrobial course of 60 days from onset of illness.

Systemic, excluding meningitis: IV: 20 mg/kg/dose every 8 hours as part of an appropriate combination regimen; may switch to oral follow-up therapy when signs and symptoms of active infection are resolved; complete 14 days of therapy or until clinical improvement, whichever is longer; maximum dose: 2,000 mg/dose.

Meningitis or disseminated infection in which meningitis cannot be ruled out: IV: 40 mg/kg/dose every 8 hours as part of an appropriate combination regimen for 2 to 3 weeks or until patient is clinically stable, whichever is longer; maximum dose: 2,000 mg/dose.

Cystic fibrosis, pulmonary exacerbation

Cystic fibrosis, pulmonary exacerbation: Limited data available:

Traditional intermittent infusion method: Infants, Children, and Adolescents: IV: 40 mg/kg/dose every 8 hours; maximum dose: 2,000 mg/dose (Ref).

Extended infusion method: Children ≥8 years and Adolescents: IV: 40 mg/kg/dose every 8 hours infused over 3 hours; maximum dose: 2,000 mg/dose; dosing based on a pharmacokinetic and pharmacodynamic study in pediatric patients with cystic fibrosis (n=30, 8 to 17 years of age); extended infusions were more likely to obtain targets as compared to traditional infusions for minimum inhibitory concentrations ≥1 mg/L (Ref).

Note: Use of the continuous infusion method to optimize exposure has also been reported in adults and a single adolescent patient with cystic fibrosis (Ref).

Febrile neutropenia, empiric therapy

Febrile neutropenia, empiric therapy: Limited data available: Infants, Children, and Adolescents: IV: 20 mg/kg/dose every 8 hours; maximum dose: 1,000 mg/dose (Ref).

Intra-abdominal infection, complicated

Intra-abdominal infection, complicated: Note: IDSA guidelines recommend treatment duration of 4 to 7 days (Ref).

Infants 1 to <3 months:

GA <32 weeks: IV: 20 mg/kg/dose every 8 hours.

GA ≥32 weeks: IV: 30 mg/kg/dose every 8 hours.

Infants ≥3 months, Children, and Adolescents: IV: 20 mg/kg/dose every 8 hours; maximum dose: 1,000 mg/dose.

Meningitis

Meningitis: Infants (limited data available in infants <3 months of age), Children, and Adolescents: IV: 40 mg/kg/dose every 8 hours; maximum dose: 2,000 mg/dose (Ref); duration should be individualized based on patient characteristics and response; treatment duration for gram-negative bacilli is a minimum of 10 to 14 days; although some experts recommend ≥21 days and at least 14 days after first negative cerebrospinal fluid culture (Ref).

Skin and skin structure infection, complicated

Skin and skin structure infection, complicated:

Manufacturer's labeling: Infants ≥3 months, Children, and Adolescents: IV: 10 mg/kg/dose every 8 hours; maximum dose: 500 mg/dose.

Severe or necrotizing infections: Infants, Children, and Adolescents: IV: 20 mg/kg/dose every 8 hours; maximum dose: 1,000 mg/dose (Ref).

Dosage adjustment for concomitant therapy: Significant drug interactions exist, requiring dose/frequency adjustment or avoidance. Consult drug interactions database for more information.

Dosing: Kidney Impairment: Pediatric

Note: Dosing is based on pharmacokinetic parameters, limited pediatric studies, adult recommendations, and expert opinion (Ref).

Altered kidney function:

Infants, Children, and Adolescents: IV:

Meropenem Dose Adjustments for Altered Kidney Function

GFR (mL/minute/1.73 m2)

If the usual recommended dose is 20 mg/kg/dose every 8 hours

If the usual recommended dose is 40 mg/kg/dose every 8 hours

>50 mL/minute/1.73 m2

No dosage adjustment necessary

No dosage adjustment necessary

>25 to ≤50 mL/minute/1.73 m2

20 mg/kg/dose every 12 hours; maximum dose: 1,000 mg/dose

40 mg/kg/dose every 12 hours; maximum dose: 2,000 mg/dose

10 to ≤25 mL/minute/1.73 m2

10 mg/kg/dose every 12 hours; maximum dose: 500 mg/dose

20 mg/kg/dose every 12 hours; maximum dose: 1,000 mg/dose

<10 mL/minute/1.73 m2

10 mg/kg/dose every 24 hours; maximum dose: 500 mg/dose

20 mg/kg/dose every 24 hours; maximum dose: 1,000 mg/dose

Hemodialysis, intermittent: Dialyzable; 75% to 87% cleared during 3-hour dialysis session (Ref).

Infants, Children, and Adolescents: IV:

Note: On dialysis days, administer dose after dialysis. Usual maximum dose is 2,000 mg/dose; lower maximum doses may be appropriate for some indications.

Daily dosing: IV: 25 mg/kg/dose every 24 hours.

Every-48-hour dosing: IV: 40 mg/kg/dose every 48 hours.

Peritoneal dialysis:

Infants, Children, Adolescents: IV: 10 to 20 mg/kg/dose every 24 hours; maximum dose: 1,000 mg/dose (Ref).

CRRT:

Note: Drug clearance is dependent on the effluent flow rate, filter type, and method of renal replacement. Appropriate dosing requires consideration of adequate drug concentrations (eg, site of infection) and consideration of initial loading doses. Close monitoring of response and adverse reactions due to drug accumulation is important; consider monitoring serum concentrations if available.

CVVH/CVVHD/CVVHDF: Infants, Children, and Adolescents: IV: 20 mg/kg/dose infused over 1 to 4 hours every 8 hours; higher doses of 40 mg/kg/dose every 8 hours may be necessary in some situations (eg, when MIC is ≥4 mg/L); maximum dose: 2,000 mg/dose (Ref).

Augmented renal clearance:

Note: Augmented renal clearance is a condition that occurs in certain critically ill patients without organ dysfunction and with normal serum creatinine concentrations that results in increased drug elimination. An 8- to 24-hour measured urinary CrCl is necessary to identify these patients (Bilbao-Meseguer 2018; Udy 2010). Due to minimal data in pediatric patients with augmented renal clearance, monitor safety and efficacy closely; consider monitoring serum concentrations if available.

GFR ≥160 mL/minute/1.73 m2: Children and Adolescents (Ref). Usual maximum dose: 2,000 mg/dose.

Extended infusion method (preferred): IV: 30 to 40 mg/kg/dose infused over 4 hours every 8 hours or 30 mg/kg/dose infused over 3 hours every 6 hours.

Traditional intermittent infusion method (over 30 minutes): IV: 40 mg/kg/dose every 6 hours.

Note: Continuous infusions may be appropriate depending on clinical situation.

Dosing: Hepatic Impairment: Pediatric

No dosage adjustment necessary.

Dosing: Adult

(For additional information see "Meropenem: Drug information")

Dosage guidance:

Dosing: Infusion method: Dosing is presented based on the traditional infusion method over 30 minutes, unless otherwise specified.

Clinical considerations: A prolonged infusion strategy (ie, extended or continuous infusion) has a greater likelihood of attaining pharmacokinetic/pharmacodynamic targets and may offer clinical benefit in patients with severe infections or less susceptible pathogens (Ref).

Usual dosage range:

Traditional intermittent infusion method (over 30 minutes): IV: 500 mg every 6 hours or 1 to 2 g every 8 hours; 500 mg every 6 hours achieves comparable pharmacokinetic and pharmacodynamic parameters to 1 g every 8 hours (Ref).

Extended infusion method (off-label): IV: 1 to 2 g every 8 hours over 3 hours. May give a loading dose of 1 to 2 g over 30 minutes, especially when rapid attainment of therapeutic drug concentrations is desired (eg, sepsis) (Ref). Some experts recommend 2 g every 8 hours over 3 hours for treatment of infections caused by certain resistant organisms (eg, carbapenem-resistant Acinetobacter baumannii, carbapenem-resistant Enterobacterales) (Ref).

Continuous infusion method (off-label): IV: 2 g every 8 hours over 8 hours or 3 g every 12 hours over 12 hours (Ref). May give a loading dose of 1 to 2 g over 30 minutes, especially when rapid attainment of therapeutic drug concentrations is desired (eg, sepsis) (Ref).

Anthrax

Anthrax (off-label use): Note: Consult public health officials for event-specific recommendations.

Systemic (meningitis excluded), treatment (alternative agent): IV: 2 g every 8 hours as part of an appropriate combination regimen for 2 weeks or until clinically stable, whichever is longer (Ref).

Meningitis, treatment: IV: 2 g every 8 hours as part of an appropriate combination regimen for 2 to 3 weeks or until clinically stable, whichever is longer (Ref).

Note: Antitoxin should also be administered. Following the course of IV combination therapy for systemic anthrax infection (including meningitis), patients exposed to aerosolized spores require oral monotherapy to complete a total antimicrobial course of 60 days (Ref).

Bloodstream infection

Bloodstream infection (gram-negative bacteremia) (off-label use): For empiric therapy of known or suspected gram-negative organisms (including Pseudomonas aeruginosa) or pathogen-directed therapy for organisms resistant to other agents.

IV: 1 g every 8 hours (Ref); for empiric therapy in patients with neutropenia, severe burns, sepsis, or septic shock, give as part of an appropriate combination regimen (Ref). Note: For critical illness or infection with an organism with an elevated minimum inhibitory concentration (MIC), some experts prefer the extended or continuous infusion method and/or increasing the dose to 2 g every 8 hours (Ref).

Duration of therapy: Usual duration is 7 to 14 days depending on the source, pathogen, extent of infection, and clinical response; a 7-day duration is recommended for patients with uncomplicated Enterobacteriaceae infection who respond appropriately to antibiotic therapy (Ref). Note: If neutropenic, extend treatment until afebrile for 2 days and neutrophil recovery (ANC ≥500 cells/mm3 and increasing) (Ref). For P. aeruginosa bacteremia in neutropenic patients, some experts treat for a minimum of 14 days and until recovery of neutrophils (Ref).

Cystic fibrosis, acute pulmonary exacerbation

Cystic fibrosis, acute pulmonary exacerbation (off-label use): For empiric or targeted therapy for P. aeruginosa or other gram-negative bacilli.

IV: 2 g every 8 hours, most often given as part of an appropriate combination regimen (Ref). Note: Some experts prefer the extended or continuous infusion method to optimize exposure (Ref).

Duration of therapy: Duration is usually 10 to 14 days depending on clinical response (Ref).

Diabetic foot infection, moderate to severe

Diabetic foot infection, moderate to severe (off-label use): As a component of empiric therapy in patients at risk for P. aeruginosa (eg, significant water exposure, macerated wound) or other gram-negative bacteria resistant to other agents (Ref).

IV: 1 g every 8 hours. Duration (which may include oral step-down therapy) is usually 2 to 4 weeks in the absence of osteomyelitis (Ref).

Intra-abdominal infection, health care–associated or high-risk community-acquired infection

Intra-abdominal infection, health care–associated or high-risk community-acquired infection:

Note: For community-acquired infection, reserve for patients who cannot tolerate a beta-lactam or are at risk for infection with an extended-spectrum beta-lactamase (ESBL)-producing organism (eg, known colonization or prior infection with an ESBL-producing organism) (Ref).

Cholecystitis, acute uncomplicated: IV: 1 g every 8 hours; continue for 1 day after gallbladder removal or until clinical resolution in patients managed nonoperatively (Ref).

Other intra-abdominal infection (eg, cholangitis, complicated cholecystitis, appendicitis, diverticulitis, intra-abdominal abscess): IV: 1 g every 8 hours. Total duration of therapy (which may include transition to oral antibiotics) is 4 to 5 days following adequate source control (Ref). For diverticulitis or uncomplicated appendicitis managed without intervention, duration is 10 to 14 days (Ref); for perforated appendicitis managed with laparoscopic appendectomy, 2 to 4 days may be sufficient (Ref). Note: For patients who are critically ill or at high risk for infection with drug-resistant pathogens, some experts favor the extended or continuous infusion method (Ref).

Intracranial abscess and spinal epidural abscess

Intracranial abscess (brain abscess, intracranial epidural abscess) or spinal epidural abscess (off-label use): As a component of empiric or directed therapy in patients at risk for P. aeruginosa or other resistant gram-negative bacteria (eg, neurosurgical or immunocompromised patients).

IV: 2 g every 8 hours as part of an appropriate combination regimen; duration generally ranges from 4 to 8 weeks for brain abscess and spinal epidural abscess and 6 to 8 weeks for intracranial epidural abscess (Ref).

Melioidosis

Melioidosis (Burkholderia pseudomallei infection ) (off-label use): Initial intensive therapy: IV: 1 g every 8 hours for 10 to 14 days; a longer duration may be necessary depending on disease severity and site of infection (Ref). Some experts recommend 2 g every 8 hours for patients with neurological involvement and adding sulfamethoxazole and trimethoprim for patients with focal disease of the CNS, prostate, bone, joint, skin, or soft tissue (Ref). Note: Following the course of parenteral therapy, eradication therapy with oral antibiotics for ≥12 weeks is recommended (Ref).

Meningitis, bacterial

Meningitis, bacterial: As a component of empiric therapy for health care-associated infections or infections in immunocompromised patients, or as pathogen-specific therapy for gram-negative bacteria resistant to other antibiotics (eg, P. aeruginosa, Acinetobacter spp.).

IV: 2 g every 8 hours. Treatment duration is 7 to 21 days depending on causative pathogen(s) and clinical response; 10 to 14 days is the minimum duration for gram-negative bacilli, although some experts prefer ≥21 days (Ref). Note: Consider use of an extended or continuous infusion for more resistant pathogens (Ref).

Neutropenic enterocolitis

Neutropenic enterocolitis (typhlitis) (alternative agent) (off-label use): Note: Reserve for patients colonized or infected with a resistant gram-negative bacillus, such as an extended-spectrum beta-lactamase (ESBL)-producing organism (Ref).

IV: 1 g every 8 hours; continue until neutropenia is resolved and clinically improved, then switch to oral antibiotics. The total duration of antibiotics is generally 14 days following recovery from neutropenia (Ref).

Neutropenic fever, high-risk cancer patients

Neutropenic fever, high-risk cancer patients (empiric therapy) (off-label use): Note: High-risk patients are those expected to have an ANC ≤100 cells/mm3 for >7 days or an ANC ≤100 cells/mm3 for any expected duration if there are ongoing comorbidities (eg, sepsis, mucositis, significant hepatic or renal dysfunction) (Ref); some experts use an ANC cutoff of <500 cells/mm3 to define high-risk patients (Ref).

IV: 1 g every 8 hours until afebrile for ≥48 hours and resolution of neutropenia (ANC ≥500 cells/mm3 and increasing) or standard duration for the specific infection identified, if longer than the duration of neutropenia. Additional agent(s) may be needed depending on clinical status (Ref). Some experts prefer the extended or continuous infusion method, particularly in those who are critically ill (Ref).

Osteomyelitis and/or discitis

Osteomyelitis and/or discitis (off-label use): IV: 1 g every 8 hours for ≥6 weeks (Ref). For empiric therapy, use in combination with other appropriate agents (Ref).

Peritonitis, treatment

Peritonitis, treatment (patients undergoing peritoneal dialysis) (off-label route)

Note: Reserve for resistant gram-negative infections or polymicrobial infections. Intraperitoneal administration is preferred to IV administration unless the patient has sepsis. Consider a 25% dose increase (for intermittent or continuous dosing) in patients with significant residual renal function (urine output >100 mL/day) (Ref).

Intermittent (long dwell in automated peritoneal dialysis): Intraperitoneal: 500 mg added to the dialysate solution once daily; allow to dwell ≥6 hours (Ref).

Intermittent (short dwell in continuous ambulatory peritoneal dialysis): Intraperitoneal: 1 g added to the dialysate solution once daily; allow to dwell ≥6 hours (Ref).

Continuous (with every exchange) (dose is per liter of dialysate): Intraperitoneal: 125 mg/L with each exchange of dialysate (Ref).

Duration of therapy: ≥3 weeks for patients with adequate clinical response; for patients with no improvement after 5 days, remove catheter and treat with appropriate systemic antibiotics for 14 days after catheter removal (Ref).

Pneumonia

Pneumonia (off-label use):

Community-acquired pneumonia: For empiric therapy of inpatients at risk of infection with a multidrug-resistant, gram-negative pathogen(s), including P. aeruginosa:

IV: 1 g every 8 hours as part of an appropriate combination regimen. Total duration (which may include oral step-down therapy) is a minimum of 5 days; a longer course may be required for patients with an immunocompromising condition, severe or complicated infection, or for P. aeruginosa infection. Patients should be clinically stable with normal vital signs prior to discontinuation (Ref).

Hospital-acquired or ventilator-associated pneumonia: For empiric therapy (often as part of an appropriate combination regimen) or pathogen-specific therapy for multidrug-resistant gram-negative pathogen(s) (eg, P. aeruginosa, Acinetobacter spp.):

IV: 1 g every 8 hours. Duration of therapy varies based on disease severity and response to therapy; treatment is typically given for 7 days (Ref). Note: Some experts prefer extended or continuous infusion for critical illness or when treating a susceptible organism with an elevated minimum inhibitory concentration (Ref).

Prosthetic joint infection

Prosthetic joint infection (pathogen-directed therapy for multidrug-resistant gram-negative bacilli, including P. aeruginosa) (off-label use): IV: 1 g every 8 hours; duration varies, but is generally 4 to 6 weeks for patients who undergo resection arthroplasty (Ref).

Sepsis and septic shock

Sepsis and septic shock (broad-spectrum empiric therapy, including P. aeruginosa) (off-label use): IV: 1 to 2 g every 8 hours in combination with other appropriate agent(s) (Ref). Initiate therapy as soon as possible once there is recognition of sepsis or septic shock. Duration is dependent on underlying source and patient response; short courses are preferred, when appropriate. Consider discontinuation if a noninfectious etiology is identified (Ref). Note: Some experts prefer the extended or continuous infusion method (Ref).

Skin and soft tissue infection, moderate to severe

Skin and soft tissue infection, moderate to severe:

Note: For patients with necrotizing infections, select surgical site infections (intestinal, GU tract), or patients with or at risk for pathogens resistant to other agents, including P. aeruginosa (Ref).

IV: 1 g every 8 hours; often used as part of an appropriate combination regimen. Usual duration (including oral step-down therapy) is 5 to 14 days based on severity and clinical response; for necrotizing infection, continue until further debridement is not necessary, patient has clinically improved, and patient is afebrile for ≥48 hours (Ref).

Urinary tract infection, complicated

Urinary tract infection, complicated (pyelonephritis or urinary tract infection with systemic signs/symptoms) (off-label use):

Note: Reserve for critically ill patients or for patients with risk factor(s) for MDR pathogens, including ESBL-producing organisms and P. aeruginosa (Ref).

IV: 1 g every 8 hours. Switch to an appropriate oral regimen once symptoms improve, if culture and susceptibility results allow. Total duration of therapy ranges from 5 to 14 days and depends on clinical response and the antimicrobial chosen to complete the regimen (Ref).

Dosage adjustment for concomitant therapy: Significant drug interactions exist, requiring dose/frequency adjustment or avoidance. Consult drug interactions database for more information.

Dosing: Kidney Impairment: Adult

The renal dosing recommendations are based upon the best available evidence and clinical expertise. Senior Editorial Team: Bruce Mueller, PharmD, FCCP, FASN, FNKF; Jason Roberts, PhD, BPharm (Hons), B App Sc, FSHP, FISAC; Michael Heung, MD, MS.

Altered kidney function: IV:

Meropenem Dose Adjustments in Kidney Impairmenta,b

CrCl (mL/minute)

If the usual recommended dose is 1 g every 8 hoursc

If the usual recommended dose is 2 g every 8 hoursc

aChoose usual recommended dose based on indication and disease severity (see "Dosing: Adult"), then choose the adjusted dose from that column based on the patient's estimated CrCl.

bExpert opinion derived from manufacturer's labeling, Burger 2018, and Golightly 2013.

cDose may be administered using the traditional intermittent infusion method (over 30 minutes) or extended infusion method (over 3 hours). Extending the infusion time to 3 hours increases the likelihood of pharmacodynamic target attainment, especially in severe infections or those caused by pathogens with an elevated minimum inhibitory concentration. May give the first dose over 30 minutes when rapid achievement of pharmacodynamic targets is desired (Ahmed 2018; Yu 2018).

dDialyzable (38% over a 4-hour session [Rubino 2018]). When scheduled dose falls on a dialysis day, administer after dialysis (Heintz 2009).

>50 to <130

No dosage adjustment necessary

No dosage adjustment necessary

>25 to ≤50

1 g every 12 hours

2 g every 12 hours

10 to ≤25

500 mg every 12 hours

1 g every 12 hours

<10

500 mg every 24 hours

1 g every 24 hours

Hemodialysis, intermittent (thrice weekly)d

500 mg every 24 hours

1 g every 24 hours

Peritoneal dialysis

500 mg every 24 hours

1 g every 24 hours

Augmented renal clearance (measured urinary CrCl ≥130 mL/minute/1.73 m2): Augmented renal clearance (ARC) is a condition that occurs in certain critically-ill patients without organ dysfunction and with normal serum creatinine concentrations. Young patients (<55 years of age) admitted post trauma or major surgery are at highest risk for ARC, as well as those with sepsis, burns, or hematologic malignancies. An 8- to 24-hour measured urinary CrCl is necessary to identify these patients (Ref). Therapeutic drug monitoring is recommended when available; doses >6 g/day have been required in some cases to achieve therapeutic (pharmacodynamic) targets (Ref).

IV:

Extended infusion method: 2 g loading dose (infused over 30 minutes) followed by 2 g infused over 3 hours every 8 hours (Ref).

Continuous infusion method: 1 g loading dose (infused over 30 minutes) followed by 6 g/day infused over 24 hours (administered either as 2 g every 8 hours over 8 hours, or 3 g every 12 hours over 12 hours) (Ref).

CRRT: Drug clearance is dependent on the effluent flow rate, filter type, and method of renal replacement. Recommendations assume high-flux dialyzers and flow rates of ~1,500 to 3,000 mL/hour, unless otherwise noted. Appropriate dosing requires consideration of adequate drug concentrations (eg, site of infection) and consideration of initial loading doses. Close monitoring of response and adverse reactions due to drug accumulation is important.

CVVH/CVVHD/CVVHDF: IV:

Traditional intermittent infusion method (over 30 minutes): 1 g loading dose followed by 500 mg to 1 g every 8 hours (Ref).

Continuous infusion method: 1 g loading dose (infused over 30 minutes) followed by 1 g infused over 12 hours every 12 hours (Ref).

PIRRT (eg, slow-low efficiency hemodiafiltration): Drug clearance is dependent on the effluent flow rate, filter type, and method of renal replacement. Appropriate dosing requires consideration of adequate drug concentrations (eg, site of infection) and consideration of initial loading doses. Close monitoring of response and adverse reactions due to drug accumulation is important.

Note: Dosing recommendations based on 8- to 10-hour daily PIRRT sessions with effluent rates of 4 to 5 L/hour (Ref) and 6 to 12 L/hour (Ref).

IV: Traditional intermittent infusion method (over 30 minutes): 1 g every 12 hours (Ref). In patients with residual diuresis (urine output ≥300 mL/day ) up to 2 g every 8 hours has been recommended (Ref).

Dosing: Hepatic Impairment: Adult

The hepatic dosing recommendations are based upon the best available evidence and clinical expertise. Senior Editorial Team: Matt Harris, PharmD, MHS, BCPS, FAST, Jeong Park, PharmD, MS, BCTXP, FCCP, FAST, Arun Jesudian, MD, Sasan Sakiani, MD.

Note: Vd is increased in the presence of ascites; use of maximum recommended indication-specific doses should be considered in patients with ascites and severe infections to ensure adequate meropenem exposure (Ref). Use of any administration method (eg, traditional intermittent, extended, or continuous) may be utilized in patients with hepatic impairment.

Hepatic impairment prior to treatment initiation (Child-Turcotte-Pugh class A to C): No dosage adjustment necessary (Ref).

Dosage adjustment in patients with chronic, worsening hepatic function during treatment (eg, progression from baseline to Child-Turcotte-Pugh class A to C): No dosage adjustment necessary (Ref).

Adverse Reactions (Significant): Considerations
CNS effects

Carbapenems, including meropenem, may cause CNS toxicity. Meropenem is associated with a lower seizure risk than imipenem/cilastatin and therefore may be preferred for certain indications (Ref). Other noteworthy CNS effects caused by meropenem include delirium, continuous epileptiform discharges, and myoclonic jerking (Ref).

Mechanism: Postulated to be due to the antagonism of the GABAA receptor binding site. C2 side chain basicity may affect seizure risk of individual antimicrobials. N-acetylation or N-methylation of the C2 cyclopentene ring can alter the basicity substitution of this ring; meropenem is less basic than imipenem-cilastatin (Ref).

Risk factors:

• Preexisting neurologic conditions (eg, seizures, stroke, brain injury) (Ref)

• Drug accumulation in kidney impairment

Clostridioides difficile infection

Clostridioides difficile infection, including Clostridioides difficile associated diarrhea, has been reported with meropenem.

Onset: Varied; may start on the first day of antibiotic therapy or up to 3 months postantibiotic (Ref).

Risk factors:

• Antibiotic exposure (highest risk factor) (Ref)

• Type of antibiotic (carbapenems among highest risk) (Ref)

• Long durations in a hospital or other health care setting (recent or current) (Ref)

• Older adults (Ref)

• Immunocompromised conditions (Ref)

• A serious underlying condition (Ref)

• GI surgery/manipulation (Ref)

• Antiulcer medications (eg, proton pump inhibitors and H2 blockers) (Ref)

• Chemotherapy (Ref)

Hypersensitivity reactions (immediate and delayed)

Immediate (including anaphylaxis, angioedema, and urticaria) (Ref) and delayed hypersensitivity reactions have been reported. Delayed hypersensitivity reactions range from skin rash to rare severe cutaneous adverse reactions (SCARs), including acute generalized exanthematous pustulosis (AGEP) (Ref), drug reaction with eosinophilia and systemic symptoms (Ref), Stevens-Johnson syndrome (Ref), and toxic epidermal necrolysis (Ref).

Mechanism: Non-dose-related; immunologic. Immediate hypersensitivity reactions (eg, anaphylaxis, angioedema, urticaria) are IgE-mediated (Ref). Delayed hypersensitivity reactions, including maculopapular rash and SCARs, are mediated by T-cells (Ref).

Onset: Immediate hypersensitivity reactions: Rapid; IgE-mediated reactions (anaphylaxis, angioedema, urticaria) generally occur within 1 hour of administration but may occur up to 6 hours after exposure (Ref). Delayed hypersensitivity reactions: Varied; maculopapular reactions typically occur 6 to 10 days after initiation. Other delayed hypersensitivity reactions, including SCARs, generally manifest after 1 to 8 weeks after initiation (although the onset of these reactions may be delayed up to 3 months) (Ref). AGEP has been reported to occur within 24 hours after initiation of meropenem (Ref).

Risk Factors:

• Previous hypersensitivity to penicillin/cephalosporins and carbapenems: Cross-reactivity between penicillins/cephalosporins and carbapenems is considered to be 1% or less (Ref); although cross-reactivity rates of 4.6% have been reported (Ref). Despite similar core structures, cross-reactions between carbapenems have not been well described (Ref). Some patients may tolerate alternative carbapenems following a hypersensitivity reaction to meropenem (Ref).

Adverse Reactions

The following adverse drug reactions and incidences are derived from product labeling unless otherwise specified.

1% to 10%:

Cardiovascular: Acute myocardial infarction (≤1%), bradycardia (≤1%), cardiac failure (≤1%), chest pain (≤1%), hypertension (≤1%), hypotension (≤1%), peripheral edema (≤1%), peripheral vascular disease (>1%), pulmonary embolism (≤1%), shock (1%), syncope (≤1%), tachycardia (≤1%)

Dermatologic: Dermal ulcer (≤1%), diaphoresis (≤1%), pruritus (1%), skin rash (2% to 3%, includes diaper-area moniliasis in infants), urticaria (≤1%)

Endocrine & metabolic: Hypervolemia (≤1%), hypoglycemia (>1%)

Gastrointestinal: Abdominal pain (≤1%), anorexia (≤1%), constipation (1% to 7%), diarrhea (4% to 7%), dyspepsia (≤1%), enlargement of abdomen (≤1%), flatulence (≤1%), gastrointestinal disease (>1%), glossitis (1%), intestinal obstruction (≤1%), nausea (≤8%), oral candidiasis (≤2%), vomiting (≤4%)

Genitourinary: Dysuria (≤1%), pelvic pain (≤1%), urinary incontinence (≤1%), vulvovaginal candidiasis (≤1%)

Hematologic & oncologic: Anemia (≤6%), hypochromic anemia (≤1%)

Hepatic: Cholestatic jaundice (≤1%), hepatic failure (≤1%), jaundice (≤1%)

Infection: Sepsis (2%)

Local: Inflammation at injection site (2%)

Nervous system: Agitation (≤1%), anxiety (≤1%), chills (≤1%), confusion (≤1%), delirium (≤1%), depression (≤1%), dizziness (≤1%), drowsiness (≤1%), hallucination (≤1%), headache (2% to 8%), insomnia (≤1%), nervousness (≤1%), pain (≤5%), paresthesia (≤1%), seizure (≤1%)

Neuromuscular & skeletal: Asthenia (≤1%), back pain (≤1%)

Renal: Renal failure syndrome (≤1%)

Respiratory: Apnea (1%), asthma (≤1%), cough (≤1%), dyspnea (≤1%), hypoxia (≤1%), pharyngitis (>1%), pleural effusion (≤1%), pneumonia (>1%), pulmonary edema (≤1%), respiratory system disorder (≤1%)

Miscellaneous: Accidental injury (>1%), fever (≤1%)

<1%:

Cardiovascular: Local thrombophlebitis, localized phlebitis

Endocrine & metabolic: Edema at insertion site

Gastrointestinal: Gastrointestinal hemorrhage, melena

Hematologic & oncologic: Hemoperitoneum

Local: Injection site reaction, pain at injection site

Respiratory: Epistaxis

Frequency not defined:

Endocrine & metabolic: Hypokalemia, increased lactate dehydrogenase

Genitourinary: Hematuria

Hematologic & oncologic: Decreased partial thromboplastin time, decreased prothrombin time, eosinophilia, quantitative disorders of platelets

Postmarketing:

Dermatologic: Acute generalized exanthematous pustulosis (Ghoshal 2015), erythema multiforme, Stevens-Johnson syndrome (Sameed 2019), toxic epidermal necrolysis (Paquet 2002)

Gastrointestinal: Clostridioides difficile associated diarrhea (Xie 2018)

Hematologic & oncologic: Agranulocytosis, hemolytic anemia (Oka 2015), leukopenia, neutropenia (Van Tuyl 2016), positive direct Coombs test, positive indirect Coombs test, thrombocytopenia (Huang 2017; Khan 2014)

Hypersensitivity: Anaphylaxis (Gil-Serrano 2019), angioedema

Immunologic: Drug reaction with eosinophilia and systemic symptoms (Prados-Castano 2015)

Contraindications

Hypersensitivity to meropenem, other drugs in the same class, or any component of the formulation; patients who have experienced anaphylactic reactions to beta-lactams

Warnings/Precautions

Concerns related to adverse effects:

• Superinfection: Prolonged use may result in fungal or bacterial superinfection.

Disease-related concerns:

• Renal impairment: Use with caution in patients with renal impairment; dosage adjustment required in patients with CrCl ≤50 mL/minute. Thrombocytopenia has been reported in patients with renal impairment.

Special populations:

• Older adult: Lower doses (based upon renal function) are often required in the elderly.

Dosage Forms: US

Excipient information presented when available (limited, particularly for generics); consult specific product labeling. [DSC] = Discontinued product

Solution Reconstituted, Intravenous [preservative free]:

Merrem: 500 mg (1 ea [DSC]); 1 g (1 ea [DSC]) [pyrogen free]

Generic: 500 mg (1 ea); 1 g (1 ea); 2 g (1 ea); 1 g/50 mL in NaCl 0.9% (1 ea); 500 mg/50 mL in NaCl 0.9% (1 ea)

Generic Equivalent Available: US

Yes

Pricing: US

Solution (reconstituted) (Meropenem Intravenous)

1 g (per each): $5.70 - $36.43

2 g (per each): $39.48

500 mg (per each): $2.64 - $18.21

Solution (reconstituted) (Meropenem-Sodium Chloride Intravenous)

1 gm/50 mL (per each): $35.89

500 mg/50 mL (per each): $24.60

Disclaimer: A representative AWP (Average Wholesale Price) price or price range is provided as reference price only. A range is provided when more than one manufacturer's AWP price is available and uses the low and high price reported by the manufacturers to determine the range. The pricing data should be used for benchmarking purposes only, and as such should not be used alone to set or adjudicate any prices for reimbursement or purchasing functions or considered to be an exact price for a single product and/or manufacturer. Medi-Span expressly disclaims all warranties of any kind or nature, whether express or implied, and assumes no liability with respect to accuracy of price or price range data published in its solutions. In no event shall Medi-Span be liable for special, indirect, incidental, or consequential damages arising from use of price or price range data. Pricing data is updated monthly.

Dosage Forms: Canada

Excipient information presented when available (limited, particularly for generics); consult specific product labeling.

Solution Reconstituted, Intravenous:

Generic: 500 mg (1 ea); 1 g (1 ea)

Administration: Pediatric

Parenteral:

IV push: Infants ≥3 months, Children, and Adolescents: Administer reconstituted solution (up to 1,000 mg) over 3 to 5 minutes; safety data are limited with 40 mg/kg doses up to a maximum of 2,000 mg.

Intermittent IV infusion: Further dilute reconstituted solution prior to administration.

Neonates and Infants <3 months: Administer as an IV infusion over 30 minutes.

Infants ≥3 months, Children, and Adolescents: Administer IV infusion over 15 to 30 minutes.

Extended IV infusion:

Neonates: Administer over 4 hours (Ref).

Children and Adolescents: Administer over 3 to 4 hours (Ref).

Administration: Adult

IV: Administer IV infusion over 15 to 30 minutes; IV bolus injection (5 to 20 mL) over 3 to 5 minutes

Extended infusion administration (off-label method): Administer over 3 hours (Ref). Note: Must consider meropenem's limited room temperature stability if using extended infusions.

Continuous infusion method (off-label method): IV: Administer every 8 hours over 8 hours or every 12 hours over 12 hours (Ref). Note: Must consider meropenem's limited room temperature stability if using extended infusions.

Storage/Stability

Freshly prepared solutions should be used. However, constituted solutions maintain satisfactory potency under the conditions described below. Solutions should not be frozen.

Store intact vials and unactivated Duplex containers at 20°C to 25°C (68°F to 77°F). Unactivated duplex units with foil strip removed from the drug chamber must be protected from light and used within 7 days at room temperature. Once activated, must be used within 1 hour if stored at room temperature or within 15 hours if stored under refrigeration. Do not freeze.

Dry powder should be stored at controlled room temperature 20°C to 25°C (68°F to 77°F).

Injection reconstitution: Stability in vial when constituted (up to 50 mg/mL) with:

SWFI: Stable for up to 3 hours at up to 25°C (77°F) or for up to 13 hours at up to 5°C (41°F).

Infusion admixture (1 to 20 mg/mL): Solution is stable when diluted in NS for 1 hour at up to 25°C (77°F) or 15 hours at up to 5°C (41°F). Solutions constituted with dextrose injection 5% should be used immediately. Note: Meropenem stability (admixed with NS at a concentration of 20 mg/mL) at room temperature for >1 hour or under refrigeration for >15 hours is not supported by the manufacturer. Data exist supporting stability for extended and continuous infusion when admixed with NS at a concentration of 14.3 mg/mL at room temperature for ≤7 hours (Fawaz 2019) and at a concentration of 20 mg/mL under refrigeration for ≤24 hours (Patel 1997). Pharmacokinetic data support the use of an admixture of 10 mg/mL in NS as stable at room temperature for an infusion duration ≤12 hours (Venugopalan 2018).

Duplex container: Following reconstitution/activation, use within 1 hour if stored at room temperature or 15 hours refrigerated

Use

Treatment of complicated appendicitis and peritonitis caused by viridans group streptococci, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacteroides fragilis, Bacteroides thetaiotaomicron, and Peptostreptococcus species (FDA approved in all ages); treatment of bacterial meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis (FDA approved in pediatric patients ages ≥3 months); treatment of complicated skin and skin structure infections caused by Staphylococcus aureus (methicillin-susceptible isolates only), Streptococcus pyogenes, Streptococcus agalactiae, viridans group streptococci, Enterococcus faecalis (vancomycin-susceptible isolates only), P. aeruginosa, E. coli, Proteus mirabilis, B. fragilis, and Peptostreptococcus species (FDA approved in ages ≥3 months and adults); has also been used for treatment of lower respiratory tract infections, acute pulmonary exacerbations in cystic fibrosis, urinary tract infections, empiric treatment of febrile neutropenia, and sepsis.

Medication Safety Issues
Sound-alike/look-alike issues:

Meropenem may be confused with ertapenem, imipenem, metroNIDAZOLE

Metabolism/Transport Effects

Substrate of OAT1/3

Drug Interactions

Note: Interacting drugs may not be individually listed below if they are part of a group interaction (eg, individual drugs within “CYP3A4 Inducers [Strong]” are NOT listed). For a complete list of drug interactions by individual drug name and detailed management recommendations, use the Lexicomp drug interactions program by clicking on the “Launch drug interactions program” link above.

Bacillus clausii: Antibiotics may diminish the therapeutic effect of Bacillus clausii. Management: Bacillus clausii should be taken in between antibiotic doses during concomitant therapy. Risk D: Consider therapy modification

BCG (Intravesical): Antibiotics may diminish the therapeutic effect of BCG (Intravesical). Risk X: Avoid combination

BCG Vaccine (Immunization): Antibiotics may diminish the therapeutic effect of BCG Vaccine (Immunization). Risk C: Monitor therapy

Cholera Vaccine: Antibiotics may diminish the therapeutic effect of Cholera Vaccine. Management: Avoid cholera vaccine in patients receiving systemic antibiotics, and within 14 days following the use of oral or parenteral antibiotics. Risk X: Avoid combination

Fecal Microbiota (Live) (Oral): May diminish the therapeutic effect of Antibiotics. Risk X: Avoid combination

Fecal Microbiota (Live) (Rectal): Antibiotics may diminish the therapeutic effect of Fecal Microbiota (Live) (Rectal). Risk X: Avoid combination

Fexinidazole: May increase the serum concentration of OAT1/3 Substrates (Clinically Relevant). Management: Avoid use of fexinidazole with OAT1/3 substrates when possible. If combined, monitor for increased OAT1/3 substrate toxicities. Risk D: Consider therapy modification

Immune Checkpoint Inhibitors (Anti-PD-1, -PD-L1, and -CTLA4 Therapies): Antibiotics may diminish the therapeutic effect of Immune Checkpoint Inhibitors (Anti-PD-1, -PD-L1, and -CTLA4 Therapies). Risk C: Monitor therapy

Lactobacillus and Estriol: Antibiotics may diminish the therapeutic effect of Lactobacillus and Estriol. Risk C: Monitor therapy

Leflunomide: May increase the serum concentration of OAT1/3 Substrates (Clinically Relevant). Risk C: Monitor therapy

Nitisinone: May increase the serum concentration of OAT1/3 Substrates (Clinically Relevant). Risk C: Monitor therapy

Pretomanid: May increase the serum concentration of OAT1/3 Substrates (Clinically Relevant). Risk C: Monitor therapy

Probenecid: May increase the serum concentration of Meropenem. Risk X: Avoid combination

Sodium Picosulfate: Antibiotics may diminish the therapeutic effect of Sodium Picosulfate. Management: Consider using an alternative product for bowel cleansing prior to a colonoscopy in patients who have recently used or are concurrently using an antibiotic. Risk D: Consider therapy modification

Taurursodiol: May increase the serum concentration of OAT1/3 Substrates (Clinically Relevant). Risk X: Avoid combination

Teriflunomide: May increase the serum concentration of OAT1/3 Substrates (Clinically Relevant). Risk C: Monitor therapy

Typhoid Vaccine: Antibiotics may diminish the therapeutic effect of Typhoid Vaccine. Only the live attenuated Ty21a strain is affected. Management: Avoid use of live attenuated typhoid vaccine (Ty21a) in patients being treated with systemic antibacterial agents. Postpone vaccination until 3 days after cessation of antibiotics and avoid starting antibiotics within 3 days of last vaccine dose. Risk D: Consider therapy modification

Vaborbactam: May increase the serum concentration of OAT1/3 Substrates (Clinically Relevant). Risk C: Monitor therapy

Valproate Products: Carbapenems may decrease the serum concentration of Valproate Products. Management: Concurrent use of carbapenem antibiotics with valproic acid is generally not recommended. Alternative antimicrobial agents should be considered, but if a concurrent carbapenem is necessary, consider additional anti-seizure medication. Risk D: Consider therapy modification

Dietary Considerations

Some products may contain sodium.

Pregnancy Considerations

Incomplete transplacental transfer of meropenem was found using an ex vivo human perfusion model (Hnat 2005).

Information related to the use of meropenem in pregnancy is limited (Yoshida 2013).

Monitoring Parameters

Renal function (SCr), hepatic function, CBC. Observe for changes in bowel movements. Monitor for signs of anaphylaxis.

Mechanism of Action

Inhibits bacterial cell wall synthesis by binding to several of the penicillin-binding proteins, which in turn inhibit the final transpeptidation step of peptidoglycan synthesis in bacterial cell walls, thus inhibiting cell wall biosynthesis; bacteria eventually lyse due to ongoing activity of cell wall autolytic enzymes (autolysins and murein hydrolases) while cell wall assembly is arrested

Pharmacokinetics (Adult Data Unless Noted)

Distribution: Penetrates into most tissues and body fluids including urinary tract, peritoneal fluid, bone, bile, lung, bronchial mucosa, muscle tissue, heart valves (Craig 1997; Nicolau 2008), and CSF (CSF penetration: Neonates and Infants ≤3 months of age: 70%).

Vd:

Preterm and Term Neonates and Infants ≤3 months of age: Median: ~0.47 L/kg (Smith 2011).

Children: 0.3 to 0.4 L/kg (Blumer 1995).

Adults: 15 to 20 L (Craig 1997); may be increased in patients who are critically ill (~35 L) (An 2023).

Protein binding: ~2%.

Metabolism: Hepatic; hydrolysis of beta-lactam bond to open beta-lactam form (inactive) (Craig 1997).

Half-life elimination:

Preterm and Term Neonates and Infants ≤3 months of age: Median: 2.7 hours; range: 1.6 to 3.8 hours (Smith 2011).

Infants and Children 3 months to 2 years of age: 1.5 hours.

Children 2 to 12 years of age and Adults: 1 hour.

Time to peak: Tissue: ~1 hour following infusion except in bile, lung, and muscle; CSF: 2 to 3 hours with inflamed meninges.

Excretion: Urine (~70% as unchanged drug; ~28% inactive metabolite); feces (2%).

Clearance:

Preterm and Term Neonates and Infants ≤3 months of age: 0.12 L/hour/kg (Smith 2011).

Infants and Children: 0.26 to 0.37 L/hour/kg (Blumer 1995).

Adults: 14.64 ± 4.55 L/hour (Chimata 1993); Adults with critical illness: 5.28 L/hour (median CrCl: 87 mL/minute) (An 2023).

Pharmacokinetics: Additional Considerations (Adult Data Unless Noted)

Altered kidney function: Clearance correlates with CrCl in patients with renal impairment.

Older adult: Reduction in plasma clearance correlates with age-associated reduction in CrCl (Craig 1997).

Anti-infective considerations:

Parameters associated with efficacy: Time dependent, associated with time free drug concentration (fT) > minimum inhibitory concentration (MIC).

Organism specific:

Gram-negative organisms (eg, E. coli, P. aeruginosa): Goal: ≥40% fT > MIC (bactericidal) (Drusano 2003; Mattoes 2004; Nicolau 2008; Ong 2007).

Population specific:

Critically ill patients in the ICU: Minimum goal: ≥50% fT > MIC; preferred goal: ≥100% fT > MIC (Abdul-Aziz 2020; Al-Shaer 2020; Roberts 2014); some experts favor ≥100% fT >4 times the MIC (Guilhaumou 2019).

Patients with cystic fibrosis: Goal: >65% fT > MIC (Kuti 2018).

Expected drug exposure in patients with normal renal function:

Infants and Children 2 months to 12 years of age: Cmax (peak): IV:

30-minute infusion, single-dose, hospitalized patients:

20 mg/kg (maximum dose: 1 g): 56.9 mg/L (Blumer 1995).

40 mg/kg (maximum dose: 1 g): 92.1 mg/L (Blumer 1995).

Adults: Cmax (peak): IV:

30-minute infusion, healthy volunteers:

500 mg, single dose: ~23 mg/L (range: 14 to 26 mg/L).

1 g, single dose: ~49 mg/L (range: 39 to 58 mg/L).

3-hour infusion, critically ill patients:

1 g, post first dose: 15.36 ± 1.11 mg/L (Kothekar 2020).

1 g, steady state: 14.14 ± 2.02 mg/L (Kothekar 2020).

Postantibiotic effect: Minimal postantibiotic effect; varies based on the organism:

P. aeruginosa, S. aureus, and Enterobacteriaceae: <2 hours (Bowker 1996; Nadler 1989).

Parameters associated with toxicity: In a retrospective study, trough concentrations (Cmin) of >64.2 mg/L and >44.5 mg/L were associated with neurotoxicity or nephrotoxicity, respectively (Imani 2017).

Brand Names: International
International Brand Names by Country
For country code abbreviations (show table)

  • (AE) United Arab Emirates: Archifar | Meronem | Meroparon | Miran;
  • (AR) Argentina: Anfletec | Fada meropenem | Merant | Meropenem | Meropenem drawer | Meropenem hlb | Meropenem kilab | Meropenem larjan | Meropenem Norgreen | Meropenem pharmavial | Meropenem richet | Merozen | Merpem | Zeropenem;
  • (AT) Austria: Merinfec | Meropenem aptapharma | Meropenem Eberth | Meropenem Hikma | Meropenem hospira | Meropenem kabi | Meropenem Noridem | Meropenem Sandoz | Optinem;
  • (AU) Australia: Apo meropenem | Dbl meropenem | Meropenem gh | Meropenem juno | Meropenem kabi | Meropenem ranbaxy | Meropenem Sandoz | Merrem | Ropenn;
  • (BD) Bangladesh: Aronem | Aropen | Carbabac | Carbanem | Fulspec | I-Penam | Inpen | Merobac | Merocar | Merocil | Merocon | Merolab | Meromax | Meronem | Meronix | Merostat | Merotrax | Meroxin | Neopenem | Oropem | Penomer | Ronem | Ropenem;
  • (BE) Belgium: Meronem | Meropenem ab | Meropenem bradex | Meropenem Fresentius Kabi | Meropenem hospira | Meropenem Sandoz;
  • (BF) Burkina Faso: Meroclass | Meronia;
  • (BG) Bulgaria: Menoinfex | Meronem | Meropenem | Meropenem aptapharma | Meropenem avantx | Meropenem hospira | Meropenem kabi;
  • (BR) Brazil: Mepenox | Meromax | Meronem | Meropenem tri hidratado | Moeplamina | Zylpen;
  • (CH) Switzerland: Meropenem actavis | Meropenem fresenius | Meropenem labatec | Meropenem Sandoz | Meropenem teva;
  • (CI) Côte d'Ivoire: Galpen | Mero | Meroclass | Merogram | Meronem | Meronia | Penemcid;
  • (CL) Chile: Acus | Icubac | Mectinex | Meronem | Merrem;
  • (CN) China: Bei neng | Hai zheng mei te | Mepem;
  • (CO) Colombia: Acus | Biosmer | Deltapem | Generopem | Kabipenem | Merobac | Merogram | Meronem | Meropenem | Meropidel | Mexopen | Pisapem | Vilipen;
  • (CZ) Czech Republic: Archifar | Menoinfex | Meronem | Meropenem aptapharma | Meropenem bradex | Meropenem hospira | Meropenem kabi | Meropenem ranbaxy | Meropenem zentiva;
  • (DE) Germany: Meronem | Meropenem basics | Meropenem Eberth | Meropenem friedrich eberth | Meropenem hexal | Meropenem Hikma | Meropenem hospira | Meropenem inresa | Meropenem kabi | Meropenem Noridem | Meropenem puren | Meropenem Rotexmedica;
  • (DO) Dominican Republic: Acus | Medogen | Merobac | Merodex | Meronem | Meropenem | Meropenem sintesis | Meropenen | Meropenil | Meroprem;
  • (EC) Ecuador: Cledopem | Ebropinem | Madiba | Meronem | Meropenem | Meropenem Ariston | Meroprem | Merrem;
  • (EE) Estonia: Agenor | Meronem | Meropenem kabi | Meropenem sun;
  • (EG) Egypt: Meronem | Merostarkyl;
  • (ES) Spain: Archifar | Meronem zeneca | Meropenem actavis | Meropenem combino pharm | Meropenem hospira | Meropenem kabi | Meropenem Kern Pharma | Meropenem ranbaxy | Meropenem Sandoz;
  • (ET) Ethiopia: Archifar | Maxinem | Mepenex | Meropenem | Merozan;
  • (FI) Finland: Meronem | Meropenem Fresenius Kabi | Meropenem hospira | Meropenem medical valley | Meropenem ranbaxy | Meropenem stada | Meropenem sun;
  • (FR) France: Meronem | Meropenem actavis | Meropenem bradex | Meropenem gerda | Meropenem Hikma | Meropenem kabi | Meropenem Panpharma | Meropenem Sandoz | Meropenem straven | Meropenem villerton;
  • (GB) United Kingdom: Meronem | Meropenem | Meropenem Sandoz;
  • (GH) Ghana: Inno mero;
  • (GR) Greece: Carbenem | Homepen | Medopenem | Mepenex | Merobact | Meronem | Meropenem hospira | Meropenem/kabi | Meropenem/noridem | Meropenem/sandoz | Meropenil | Merovia | Merozan | Nemerop | Ronepem | Rulmenem | Santamer;
  • (HK) Hong Kong: Meronem | Meropenem;
  • (HR) Croatia: Meronem | Meropenem hospira | Meropenem Sandoz;
  • (HU) Hungary: Meronem | Meropenem anfarm | Meropenem aptapharma | Meropenem bradex | Meropenem hospira | Meropenem kabi | Meropenem medico uno;
  • (ID) Indonesia: Caprenem | Caronem | Combipenem | Eradix | Granem | Merem | Merobat | Meronem | Meropenem | Meroxi | Opimer | Rindonem | Ronem | Sefanem | Tripenem;
  • (IE) Ireland: Meronem | Meropenem | Meroponia;
  • (IN) India: Almor | Alpenam | Alvomer | Anapen ed | Aropan | Astrapenam | Azopen | Bd meroni | Brutapenem | Canem | Celomer | Empipenem | Emstar | Erope | Esblanem | Fytopenem | Ibimero | Icubac | Indopenem | Innomer | Ixza | Kupen | M nem | Maxopen | Medinem | Menem | Meny | Mepem | Merem | Meriwok | Merixim | Mero | Mero ec | Merobax | Merocare | Merocept | Merocrit | Merofav | Merofic | Merofit | Merofit plus | Meroglan | Merogra | Merogram | Merokem | Merokwik | Merolan | Merolin | Meroline | Meromac | Meromarc | Meromax | Meronem | Meropik | Meropin | Meroplan | Meropoint | Meroreach | Merorich | Merosta | Merosure kit | Merotec | Merotrol | Merotum | Merovaz | Merowin | Meroza | Merpy | Merrobe | Micropenam | Mp nam | Mpenem | Mucad | Nexinem | Nucytin ndd | Pacemero | Penmer | Penu m | Plugpen | Pseudonam | Ronem | Ruaj | Treonam | Troypenem | Ubpenem | Verpenem | Wopenem | Zamic | Zaxter | Zymopenem | Zypenem;
  • (IT) Italy: Luxomer | Meropenem | Meropenem aurobindo | Meropenem hospira | Meropenem ranbaxy | Meropenem Sandoz | Meropenem Venus Pharma | Merrem;
  • (JO) Jordan: Mepra | Merolab | Meronem | Meropa | Meropenem hospira;
  • (JP) Japan: Meropen | Meropenem | Meropenem Meiji | Meropenem Np | Meropenem Towa;
  • (KE) Kenya: Alpenam | Apopenem | Aropem | Bestinem | Canem | Galpen | Inno mero | Maxicare | Merogram | Meromark | Meronem | Meronia | Meronir | Meropen | Meropenem | Meropenem agio | Merosan | Merrobe | Monan | Penem | Peromene | Ronem | Specbac | Zaxter;
  • (KR) Korea, Republic of: Ampenem | Auspenem | Baropenem | Cellpenem | Daewoong meropenem | Dongkwang meropenem | Empenem | Genpenem | Hanlim meropenam | Ilsung meropenem | Lite meropenem | M.p.m | Mcnulty meropenem | Mebapenem | Mecapem | Mecapen | Mecapenem | Mepem | Mepinem | Meroem | Meropenem | Merosin | Neopem | Newropenem | Omnipenem | Oropenem | Pospenem | Reyon meropenem | Samjin meropenem | Samsung meropenem | Uni q pem | Yuhan meropen | Yungjin meropenem;
  • (KW) Kuwait: Archifar | Meronem | Meroparon | Meropenem hexal;
  • (LB) Lebanon: Archifar | Exipenem | Merolin | Meronem | Meropenem | Miran | Ropenem;
  • (LT) Lithuania: Acronem | Agenorem | Meronem | Meropen dr. eberth | Meropenem | Meropenem actavis | Meropenem anfarm | Meropenem Hikma | Meropenem hospira | Meropenem kabi | Meropenem ranbaxy | Meropenem Sandoz | Meropenem sun | Rexorem;
  • (LU) Luxembourg: Meronem | Meropenem kabi;
  • (LV) Latvia: Agenorem | Archifar | Meronem | Meropenem hospira | Meropenem kabi | Meropenem ranbaxy | Meropenem Sandoz | Meropenem sun;
  • (MA) Morocco: Ropenem rambaxy;
  • (MX) Mexico: Amplium | Avepenalis | Bapentor | Dimethyper | Eropenil | Indinem | Infepro | Kipirem | Lusantem | Majaden | Mermavie | Meronny | Meropenem | Meropenem probiomed | Merquenat | Merrem | Merrsit | Merstev | Nauper | Negram bio | Pemifhen | Pisapem | Strinem | Vetimont;
  • (MY) Malaysia: Mapenem | Meraparon | Meronem | Meropenem | Meropenem kabi | Monem | Nuronem | Pospenem;
  • (NG) Nigeria: Miral meropenem;
  • (NL) Netherlands: Meronem | Meropenem | Meropenem eureco pharma | Meropenem Sandoz;
  • (NO) Norway: Meronem | Meropenem | Meropenem bradex | Meropenem Fresenius Kabi | Meropenem hospira | Meropenem Sandoz | Meropenem sun;
  • (NZ) New Zealand: Meropenem | Meropenem AFT | Meropenem ranbaxy | Penembact;
  • (PE) Peru: Merobac | Meroefectil | Meromek | Meronen | Meropemed | Meropenem | Mezonex | Penistatin | Ronem | Ropenem;
  • (PH) Philippines: Aropen | Bdmero | Canem | Ecopenem | Erodium | Grovipen | Jairon | Kabimax | Meinem | Mepenem | Merix | Meroget | Meromax | Meronem | Merop | Meropenem hospira | Meropenex | Meropevex | Meroqure | Merosan | Merosea | Merostar | Merovex | Merozan | Mervex | Natronem | Penelev | Plemonem | Pospenem | Ritemed meropenem trihydrate | Ropenefix | Ropenem | Sitipenam | Sumopen | Supenem | Winmero;
  • (PK) Pakistan: Baripenem | Cili penem | Cilipenem | Eronem | Merem | Merocon | Meroget | Meromax | Meronem | Meroque | Merostin | Merowin | Olver | Penro | Pinomer | Ropen;
  • (PL) Poland: Merinfec | Meronem | Meropenem acic | Meropenem aptapharma | Meropenem genoptim | Meropenem hospira | Meropenem kabi | Meropenem Noridem | Meropenem polfa lodz | Meropenem Sandoz | Meropenem zentiva | Merozan | Nableran;
  • (PR) Puerto Rico: Meropenem | Merrem;
  • (PT) Portugal: Meronem | Meropenem | Meropenem aurovitas | Meropenem combino | Meropenem enexi | Meropenem generis | Meropenem Hikma | Meropenem hospira;
  • (PY) Paraguay: Acus | Fada meropenem | Grambiot | Meroefectil | Meropemed | Meropenem bioteng | Meropenem cipla | Meropenem demotek | Meropenem gemepe | Meropenem imedic | Meropenem interlabo | Meropenem klonal | Meropenem larjan | Meropenem libra | Meropenem nortelab | Meropenem northia | Meropenem prosalud | Meropenem richet | Meropenem suanfarma | Meropenem vmg | Metampen | Penistatin | Peromex;
  • (QA) Qatar: Archifar | Merolab | Meronem | Meropenem Kabi | Penerem | Ronem;
  • (RO) Romania: Archifar | Loditer;
  • (RU) Russian Federation: Farmameropen | Mepenem | Merexid | Meronem | Meropenabol | Meropenem | Meropenem alkem | Meropenem deco | Meropenem Jodas | Meropenem leksvm | Meropenem plethico | Meropenem spenser | Meropenem vero | Meropenem Vexta | Meropenem vial | Nerinam | Penemra | Propinem | Syronem | Velpenem;
  • (SA) Saudi Arabia: Archifar | Mepra | Meropa | Meropenem | Meroza | Miran | Ronem | Treonam;
  • (SE) Sweden: Meronem | Meropenem bradex | Meropenem FarmaPlus | Meropenem Fresenius Kabi | Meropenem hospira | Meropenem Sandoz | Meropenem stada | Meropenem sun;
  • (SG) Singapore: Archifar | Meronem | Meropenem | Meropenem labatec;
  • (SI) Slovenia: Meronem | Meropenem actavis | Meropenem aptapharma | Meropenem kabi | Meropenem Lek | Meropenem polfa lodz;
  • (SK) Slovakia: Archifar | Meronem | Meropenem Eberth | Meropenem hospira | Meropenem kabi | Meropenem Sandoz;
  • (TH) Thailand: Accurem | Bdmero | Bestinem | Enem | Mapenem | Maxicin | Mero | Meroac | Merogrix | Meronem | Meropenem | Meropenem Sandoz | Meropidel | Monem | Nemmed | Penem | Romenem | Zaxter;
  • (TN) Tunisia: Archifar | Meropenem kabi;
  • (TR) Turkey: Maxipen | Meronem | Merosid | Merozan | Mopem | Penerem;
  • (TW) Taiwan: Bojum | Carpem | Eropem | Meirop | Melopen | Mepem | Mepenem | Merobiotic | Meropenem | Meroxin | Myron;
  • (UA) Ukraine: Alvopenem | Aris | Brenem 1000 | Demopenem | Diapenem | Europenem | Exipenem | Macpenem | Makpenem | Medopenem | Mepenam | Merobak | Merobocid | Merogram | Meromak | Meromek | Meronem | Meropenem | Meropenem Bista | Merospen | Panlactam | Romenem | Ronem | Syronem;
  • (UG) Uganda: Akumero | Archifar | Maxinem | Mero | Merogram | Meronia | Meronir | Merosan | Merrobe | Monan | Ronem | Zaxter;
  • (UY) Uruguay: Meroefectil | Meronem | Meropenem richet | Meroprem;
  • (VE) Venezuela, Bolivarian Republic of: Mepenem | Merobac | Merodex | Merogram | Merona | Meronem | Meropenem | Merosan | Mertac | Mespen | Pronem | Unipenem;
  • (VN) Viet Nam: Bironem | Macgem;
  • (ZA) South Africa: Adco meropenem | Aspen Meropenem | Mepnem | Mercarb | Mercide | Merobax | Meroject | Meronem | Meropenem fresenius | Meropenem watson | Ronem;
  • (ZM) Zambia: Bestinem | Canem;
  • (ZW) Zimbabwe: Meronem | Ronem
  1. Abdul-Aziz MH, Alffenaar JC, Bassetti M, et al; Infection Section of European Society of Intensive Care Medicine (ESICM); Pharmacokinetic/Pharmacodynamic and Critically Ill Patient Study Groups of European Society of Clinical Microbiology and Infectious Diseases (ESCMID); Infectious Diseases Group of International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT); Infections in the ICU and Sepsis Working Group of International Society of Antimicrobial Chemotherapy (ISAC). Antimicrobial therapeutic drug monitoring in critically ill adult patients: a position paper. Intensive Care Med. 2020;46(6):1127-1153. doi:10.1007/s00134-020-06050-1 [PubMed 32383061]
  2. Ahmed N, Jen SP, Altshuler D, Papadopoulos J, Pham VP, Dubrovskaya Y. Evaluation of meropenem extended versus intermittent infusion dosing protocol in critically ill patients [January 1, 2018]. J Intensive Care Med. doi:10.1177/0885066618784264 [PubMed 29954243]
  3. Al-Ahmad M, Rodriguez-Bouza T. Drug allergy evaluation for betalactam hypersensitivity: Cross-reactivity with cephalosporines, carbapenems and negative predictive value. Asian Pac J Allergy Immunol. 2018;36(1):27-31. doi:10.12932/AP0853 [PubMed 28577519]
  4. Al-Shaer MH, Rubido E, Cherabuddi K, Venugopalan V, Klinker K, Peloquin C. Early therapeutic monitoring of β-lactams and associated therapy outcomes in critically ill patients. J Antimicrob Chemother. 2020;75(12):3644-3651. doi:10.1093/jac/dkaa359 [PubMed 32910809]
  5. Alobaid AS, Wallis SC, Jarrett P, et al. Effect of obesity on the population pharmacokinetics of meropenem in critically ill patients. Antimicrob Agents Chemother. 2016a;60(8):4577-4584. doi:10.1128/AAC.00531-16 [PubMed 27185798]
  6. Alobaid AS, Brinkmann A, Frey OR, et al. What is the effect of obesity on piperacillin and meropenem trough concentrations in critically ill patients? J Antimicrob Chemother. 2016b;71(3):696-702. doi:10.1093/jac/dkv412 [PubMed 26702922]
  7. American Academy of Pediatrics (AAP). In: Kimberlin DW, Brady MT, Jackson MA, Long SA, eds. Red Book: 2018 Report of the Committee on Infectious Diseases. 31st ed. Elk Grove Village, IL: American Academy of Pediatrics; 2018.
  8. American Academy of Pediatrics (AAP). In: Kimberlin DW, Barnett ED, Lynfield R, Sawyer MH, eds. Red Book: 2021 Report of the Committee on Infectious Diseases. 32nd ed. American Academy of Pediatrics; 2021a.
  9. American Academy of Pediatrics (AAP). Serious neonatal cacterial infections caused by Enterobacteriaceae. In: Kimberlin DW, Barnett ED, Lynfield R, Sawyer MH, eds. Red Book: 2021 Report of the Committee on Infectious Diseases. 32nd ed. American Academy of Pediatrics; 2021b: 311-315.
  10. An G, Creech CB, Wu N, et al. Evaluation of empirical dosing regimens for meropenem in intensive care unit patients using population pharmacokinetic modeling and target attainment analysis. Antimicrob Agents Chemother. 2023;67(1):e0131222. doi:10.1128/aac.01312-22 [PubMed 36622154]
  11. Anderson PO, Sauberan JB. Modeling drug passage into human milk. Clin Pharmacol Ther. 2016;100(1):42-52. [PubMed 27060684]
  12. André P, Diezi L, Dao K, et al. Ensuring sufficient trough plasma concentrations for broad-spectrum beta-lactam antibiotics in children with malignancies: beware of augmented renal clearance! Front Pediatr. 2022;9:768438. doi:10.3389/fped.2021.768438 [PubMed 35083184]
  13. Aronoff GR, Bennett WM, Berns JS, et al. Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children. 5th ed. Philadelphia, PA: American College of Physicians; 2007:61, 153.
  14. Barshak MB. Antimicrobial approach to intra-abdominal infections in adults. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed January 6, 2023.
  15. Bastida C, Hernández-Tejero M, Aziz F, et al. Meropenem population pharmacokinetics in patients with decompensated cirrhosis and severe infections. J Antimicrob Chemother. 2020;75(12):3619-3624. doi:10.1093/jac/dkaa362 [PubMed 32887993]
  16. Berbari EF, Kanj SS, Kowalski TJ, et al; Infectious Diseases Society of America. 2015 Infectious Diseases Society of America (IDSA) clinical practice guidelines for the diagnosis and treatment of native vertebral osteomyelitis in adults. Clin Infect Dis. 2015;61(6):e26-e46. [PubMed 26229122]
  17. Beumier M, Casu GS, Hites M, et al. β-lactam antibiotic concentrations during continuous renal replacement therapy. Crit Care. 2014;18(3):R105. doi:10.1186/cc13886 [PubMed 24886826]
  18. Bilbao-Meseguer I, Rodríguez-Gascón A, Barrasa H, Isla A, Solinís MÁ. Augmented renal clearance in critically ill patients: a systematic review. Clin Pharmacokinet. 2018;57(9):1107-1121. doi:10.1007/s40262-018-0636-7 [PubMed 29441476]
  19. Blumenthal KG, Peter JG, Trubiano JA, Phillips EJ. Antibiotic allergy. Lancet. 2019;393(10167):183-198. doi:10.1016/S0140-6736(18)32218-9 [PubMed 30558872]
  20. Blumer JL, Reed MD, Kearns GL, et al. Sequential, single-dose pharmacokinetic evaluation of meropenem in hospitalized infants and children. Antimicrob Agents Chemother. 1995;39(8):1721-1725. doi:10.1128/aac.39.8.1721 [PubMed 7486908]
  21. Blumer JL, Saiman L, Konstan MW, Melnick D. The efficacy and safety of meropenem and tobramycin vs ceftazidime and tobramycin in the treatment of acute pulmonary exacerbations in patients with cystic fibrosis. Chest. 2005;128(4):2336-2346. [PubMed 16236892]
  22. Blummer JL. Pharmacokinetic determinants of carbapenem therapy in neonates and children. Pediatr Infect Dis J. 1996;15(8):733-737. [PubMed 8858691]
  23. Bodilsen J, Brouwer MC, Nielsen H, Van De Beek D. Anti-infective treatment of brain abscess. Expert Rev Anti Infect Ther. 2018;16(7):565-578. doi: 10.1080/14787210.2018.1489722. [PubMed 29909695]
  24. Bowker KE, Holt HA, Reeves DS, MacGowan AP. Bactericidal activity, post antibiotic effect and modified controlled effective regrowth time of meropenem at high concentrations. J Antimicrob Chemother. 1996;38(6):1055-1060. doi:10.1093/jac/38.6.1055 [PubMed 9023653]
  25. Bradley JS. Meropenem: a new, extremely broad spectrum beta-lactam antibiotic for serious infections in pediatrics. Pediatr Infect Dis J. 1997;16:263-268. [PubMed 9076812]
  26. Bradley JS, Nelson JD, Barnett E, et al. Nelson's Pediatric Antimicrobial Therapy. 25th ed. American Academy of Pediatrics; 2019.
  27. Bradley JS, Nelson JD, eds. Nelson's Pediatric Antimicrobial Therapy. 29th ed. American Academy of Pediatrics; 2023.
  28. Bradley JS, Peacock G, Krug SE, et al. Pediatric anthrax clinical management. Pediatrics. 2014;133(5):e1411-e1436. doi:10.1542/peds.2014-0563 [PubMed 24777226]
  29. Bradley JS, Sauberan JB, Ambrose PG, et al. Meropenem pharmacokinetics, pharmacodynamics, and Monte Carlo simulation in the neonate. Pediatr Infect Dis J. 2008;27(9):794-799. [PubMed 18645546]
  30. Braune S, König C, Roberts JA, et al. Pharmacokinetics of meropenem in septic patients on sustained low-efficiency dialysis: a population pharmacokinetic study. Crit Care. 2018;22(1):25. doi:10.1186/s13054-018-1940-1 [PubMed 29382394]
  31. Brockow K, Przybilla B, Aberer W, et al. Guideline for the diagnosis of drug hypersensitivity reactions: S2K-Guideline of the German Society for Allergology and Clinical Immunology (DGAKI) and the German Dermatological Society (DDG) in collaboration with the Association of German Allergologists (AeDA), the German Society for Pediatric Allergology and Environmental Medicine (GPA), the German Contact Dermatitis Research Group (DKG), the Swiss Society for Allergy and Immunology (SGAI), the Austrian Society for Allergology and Immunology (ÖGAI), the German Academy of Allergology and Environmental Medicine (DAAU), the German Center for Documentation of Severe Skin Reactions and the German Federal Institute for Drugs and Medical Products (BfArM). Allergo J Int. 2015;24(3):94-105. doi:10.1007/s40629-015-0052-6 [PubMed 26120552]
  32. Brown KA, Khanafer N, Daneman N, Fisman DN. Meta-analysis of antibiotics and the risk of community-associated Clostridium difficile infection. Antimicrob Agents Chemother. 2013;57(5):2326-2332. doi:10.1128/AAC.02176-12 [PubMed 23478961]
  33. Byrne S, Maddison J, Connor P, et al. Clinical evaluation of meropenem versus ceftazidime for the treatment of Pseudomonas spp. infections in cystic fibrosis patients. J Antimicrob Chemother. 1995;36(suppl A):135-143. [PubMed 8543489]
  34. Burger R, Guidi M, Calpini V, et al. Effect of renal clearance and continuous renal replacement therapy on appropriateness of recommended meropenem dosing regimens in critically ill patients with susceptible life-threatening infections. J Antimicrob Chemother. 2018;73(12):3413-3422. doi:10.1093/jac/dky370 [PubMed 30304491]
  35. Capitano B, Nicolau DP, Potoski BA, et al. Meropenem administered as a prolonged infusion to treat serious gram-negative central nervous system infections. Pharmacotherapy. 2004;24(6):803-807. doi: 10.1592/phco.24.8.803.36070. [PubMed 15222672]
  36. Centers for Disease Control and Prevention (CDC). FAQs for clinicians about C. diff. https://www.cdc.gov/cdiff/clinicians/faq.html. March 27, 2020. Accessed November 19, 2020.
  37. Cheatham SC, Fleming MR, Healy DP, et al. Steady-state pharmacokinetics and pharmacodynamics of meropenem in morbidly obese patients hospitalized in an intensive care unit. J Clin Pharmacol. 2014;54(3):324-330. doi:10.1002/jcph.196 [PubMed 24122855]
  38. Cheng AC, Fisher DA, Anstey NM, Stephens DP, Jacups SP, Currie BJ. Outcomes of patients with melioidosis treated with meropenem. Antimicrob Agents Chemother. 2004;48(5):1763-1765. [PubMed 15105132]
  39. Chimata M, Nagase M, Suzuki Y, Shimomura M, Kakuta S. Pharmacokinetics of meropenem in patients with various degrees of renal function, including patients with end-stage renal disease. Antimicrob Agents Chemother. 1993;37(2):229-233. doi:10.1128/AAC.37.2.229 [PubMed 8452352]
  40. Chmiel JF, Aksamit TR, Chotirmall SH, et al. Antibiotic management of lung infections in cystic fibrosis. I. The microbiome, methicillin-resistant Staphylococcus aureus, gram-negative bacteria, and multiple infections. Ann Am Thorac Soc. 2014;11(7):1120-1129. [PubMed 25102221]
  41. Chung EK, Cheatham SC, Fleming MR, Healy DP, Kays MB. Population pharmacokinetics and pharmacodynamics of meropenem in nonobese, obese, and morbidly obese patients. J Clin Pharmacol. 2017;57(3):356-368. doi:10.1002/jcph.812 [PubMed 27530916]
  42. Cies JJ, Moore WS 2nd, Enache A, Chopra A. Population pharmacokinetics and pharmacodynamic target attainment of meropenem in critically ill young children. J Pediatr Pharmacol Ther. 2017;22(4):276-285. doi:10.5863/1551-6776-22.4.276 [PubMed 28943823]
  43. Collins CE, Ayturk MD, Flahive JM, Emhoff TA, Anderson FA Jr, Santry HP. Epidemiology and outcomes of community-acquired Clostridium difficile infections in Medicare beneficiaries. J Am Coll Surg. 2014;218(6):1141-1147.e1. doi:10.1016/j.jamcollsurg.2014.01.053 [PubMed 24755188]
  44. Courter JD, Kuti JL, Girotto JE, Nicolau DP. Optimizing bactericidal exposure for beta-lactams using prolonged and continuous infusions in the pediatric population. Pediatr Blood Cancer. 2009;53(3):379-385. doi:10.1002/pbc.22051 [PubMed 19422028]
  45. Cox CE, Holloway WJ, Geckler RW. A multicenter comparative study of meropenem and imipenem/cilastatin in the treatment of complicated urinary tract infections in hospitalized patients. Clin Infect Dis. 1995;21(1):86-92. [PubMed 7578765]
  46. Craig WA. The pharmacology of meropenem, a new carbapenem antibiotic. Clin Infect Dis. 1997;24(suppl 2):266-275. doi:10.1093/clinids/24.supplement_2.s266 [PubMed 9126702]
  47. Crandon JL, Ariano RE, Zelenitsky SA, Nicasio AM, Kuti JL, Nicolau. Optimization of meropenem dosage in the critically ill population based on renal function. Intensive Care Med. 2011;37(4):632-638. [PubMed 21136037]
  48. Currie B, Anstey NM. Treatment and prognosis of melioidosis. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed December 16, 2019.
  49. Dandekar PK, Maglio D, Sutherland CA, et al. Pharmacokinetics of Meropenem 0.5 and 2 g Every 8 Hours as a 3-Hour Infusion. Pharmacotherapy. 2003;23(8):988-991. [PubMed 12921245]
  50. de Fijter CW, Jakulj L, Amiri F, Zandvliet A, Franssen E. Intraperitoneal meropenem for polymicrobial peritoneal dialysis-related peritonitis. Perit Dial Int. 2016;36(5):572-573. doi:10.3747/pdi.2016.00023 [PubMed 27659932]
  51. de Wijkerslooth EML, Boerma EG, van Rossem CC, et al; APPIC Study Group. 2 days versus 5 days of postoperative antibiotics for complex appendicitis: a pragmatic, open-label, multicentre, non-inferiority randomised trial. Lancet. 2023;401(10374):366-376. doi:10.1016/S0140-6736(22)02588-0 [PubMed 36669519]
  52. Del Bono V, Giacobbe DR, Marchese A, et al. Meropenem for treating KPC-producing Klebsiella pneumoniae bloodstream infections: Should we get to the PK/PD root of the paradox? Virulence. 2017;8(1):66-73. doi: 10.1080/21505594.2016.1213476. [PubMed 27430122]
  53. Delfino E, Fucile C, Del Bono V, et al. Pharmacokinetics of high-dose extended-infusion meropenem during pulmonary exacerbation in adult cystic fibrosis patients: a case series. New Microbiol. 2018;41(1):47-51. [PubMed 29313863]
  54. Deshpande A, Pasupuleti V, Thota P, et al. Community-associated Clostridium difficile infection and antibiotics: a meta-analysis. J Antimicrob Chemother. 2013;68(9):1951-1961. doi:10.1093/jac/dkt129 [PubMed 23620467]
  55. Deshpande P, Chen J, Gofran A, Murea M, Golestaneh L. Meropenem removal in critically ill patients undergoing sustained low-efficiency dialysis (SLED). Nephrol Dial Transplant. 2010;25(8):2632-2636. doi:10.1093/ndt/gfq090 [PubMed 20181801]
  56. Domville-Lewis C, Friedland PL, Santa Maria PL. Pott's puffy tumour and intracranial complications of frontal sinusitis in pregnancy. J Laryngol Otol. 2013;127(Suppl 1):S35-S38. [PubMed 22892137]
  57. Drusano GL. Prevention of resistance: a goal for dose selection for antimicrobial agents. Clin Infect Dis. 2003;36(suppl 1):S42-S50. doi:10.1086/344653 [PubMed 12516029]
  58. Dulhunty JM, Roberts JA, Davis JS, et al; BLING II Investigators for the ANZICS Clinical Trials Group. A multicenter randomized trial of continuous versus intermittent β-lactam infusion in severe sepsis. Am J Respir Crit Care Med. 2015;192(11):1298-1305. doi: 10.1164/rccm.201505-0857OC. [PubMed 26200166]
  59. Economou CJP, Wong G, McWhinney B, Ungerer JPJ, Lipman J, Roberts JA. Impact of β-lactam antibiotic therapeutic drug monitoring on dose adjustments in critically ill patients undergoing continuous renal replacement therapy. Int J Antimicrob Agents. 2017;49(5):589-594. doi:10.1016/j.ijantimicag.2017.01.009 [PubMed 28341612]
  60. Ehmann L, Zoller M, Minichmayr IK, et al. Development of a dosing algorithm for meropenem in critically ill patients based on a population pharmacokinetic/pharmacodynamic analysis. Int J Antimicrob Agents. 2019;54(3):309-317. doi:10.1016/j.ijantimicag.2019.06.016 [PubMed 31229669]
  61. Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021;47(11):1181-1247. doi:10.1007/s00134-021-06506-y [PubMed 34599691]
  62. Expert opinion. Senior Obesity Editorial Team: Jeffrey F. Barletta, PharmD, FCCM; Manjunath P. Pai, PharmD, FCP; Jason A. Roberts, PhD, BPharm (Hons), B App Sc, FSHP, FISAC.
  63. Fawaz S, Barton S, Whitney L, Swinden J, Nabhani-Gebara S. Stability of meropenem after reconstitution for administration by prolonged infusion. Hosp Pharm. 2019;54(3):190-196. doi: 10.1177/0018578718779009. [PubMed 31205331]
  64. Fehér C, Rovira M, Soriano A, et al. Effect of meropenem administration in extended infusion on the clinical outcome of febrile neutropenia: a retrospective observational study. J Antimicrob Chemother. 2014;69(9):2556-2562. doi: 10.1093/jac/dku150. [PubMed 24855125]
  65. Fish DN. Meropenem in the treatment of complicated skin and soft tissue infections. Ther Clin Risk Manag. 2006;2(4):401-415. doi: 10.2147/tcrm.2006.2.4.401. [PubMed 18360652]
  66. Flume PA, Mogayzel PJ Jr, Robinson KA, et al; Clinical Practice Guidelines for Pulmonary Therapies Committee. Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations. Am J Respir Crit Care Med. 2009;180(9):802-808. doi: 10.1164/rccm.200812-1845PP. [PubMed 19729669]
  67. Freifeld AG, Bow EJ, Sepkowitz KA, et al; Infectious Diseases Society of America. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2011;52(4):e56-e93. doi: 10.1093/cid/cir073. [PubMed 21258094]
  68. Gaeta F, Valluzzi RL, Alonzi C, Maggioletti M, Caruso C, Romano A. Tolerability of aztreonam and carbapenems in patients with IgE-mediated hypersensitivity to penicillins. J Allergy Clin Immunol. 2015;135(4):972-976. doi:10.1016/j.jaci.2014.10.011 [PubMed 25457154]
  69. Ghoshal L, Nandi S, Sarkar A, Das S. Acute generalized exanthematous pustulosis due to meropenem: An unusual side effect of a commonly used drug. Indian Dermatol Online J. 2015;6(6):446-448. doi:10.4103/2229-5178.169711 [PubMed 26751943]
  70. Germovsek E, Lutsar I, Kipper K, et al; NeoMero Consortium. Plasma and CSF pharmacokinetics of meropenem in neonates and young infants: Results from the NeoMero studies. J Antimicrob Chemother. 2018;73(7):1908-1916. doi:10.1093/jac/dky128 [PubMed 29684147]
  71. Gil-Serrano J, Cardona V, Luengo O, et al. Anaphylactic shock to meropenem with ertapenem tolerance: a case report. J Allergy Clin Immunol Pract. 2019;7(6):2057-2058. doi:10.1016/j.jaip.2019.01.052 [PubMed 30763732]
  72. Goldstein SL, Murry DJ, May S, Aleksic A, Sowinski KM, Blaney S. Meropenem pharmacokinetics in children and adolescents receiving hemodialysis. Pediatr Nephrol. 2001;16(12):1015-1018. doi:10.1007/s004670100015 [PubMed 11793091]
  73. Golightly LK, Teitelbaum I, Kiser TH, et al, eds. Renal Pharmacotherapy: Dosage Adjustment of Medications Eliminated by the Kidneys. New York, NY: Springer Science; 2013.
  74. Gomi H, Solomkin JS, Schlossberg D, et al. Tokyo guidelines 2018: antimicrobial therapy for acute cholangitis and cholecystitis. J Hepatobiliary Pancreat Sci. 2018;25(1):3-16. doi: 10.1002/jhbp.518. [PubMed 29090866]
  75. Goss CH, Heltshe SL, West NE, et al; STOP2 Investigators. A randomized clinical trial of antimicrobial duration for cystic fibrosis pulmonary exacerbation treatment. Am J Respir Crit Care Med. 2021;204(11):1295-1305. doi:10.1164/rccm.202102-0461OC [PubMed 34469706]
  76. Gould FK, Denning DW, Elliott TS, et al. Guidelines for the diagnosis and antibiotic treatment of endocarditis in adults: a report of the Working Party of the British Society for Antimicrobial Chemotherapy. J Antimicrob Chemother. 2012;67(2):269-289. [PubMed 22086858]
  77. Griemsmann M, Grote-Koska D, Cornberg M, Schmidt JJ, Maasoumy B; CirPK - Study Group. Plasma and ascites pharmacokinetics of meropenem in patients with decompensated cirrhosis and spontaneous bacterial peritonitis. J Hepatol. 2022;76(1):230-233. doi:10.1016/j.jhep.2021.07.015 [PubMed 34310999]
  78. Guilhaumou R, Benaboud S, Bennis Y, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d'Anesthésie et Réanimation-SFAR). Crit Care. 2019;23(1):104. doi:10.1186/s13054-019-2378-9 [PubMed 30925922]
  79. Gupta K. Acute complicated urinary tract infection (including pyelonephritis) in adults. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed December 16, 2022.
  80. Gupta K, Hooton TM, Naber KG, etc.; Infectious Diseases Society of America; European Society for Microbiology and Infectious Diseases. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis. 2011;52(5):e103-e120. doi:10.1093/cid/ciq257 [PubMed 21292654]
  81. Hahn A, Jensen C, Fanous H, et al. Relationship of Pulmonary Outcomes, Microbiology, and Serum Antibiotic Concentrations in Cystic Fibrosis Patients. J Pediatr Pharmacol Ther. 2018;23(5):379-389. doi:10.5863/1551-6776-23.5.379 [PubMed 30429692]
  82. Hasbun R. Treatment of bacterial meningitis caused by specific pathogens in adults. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed December 11, 2019.
  83. Heintz BH, Matzke GR, Dager WE. Antimicrobial dosing concepts and recommendations for critically ill adult patients receiving continuous renal replacement therapy or intermittent hemodialysis. Pharmacotherapy. 2009;29(5):562-577. [PubMed 19397464]
  84. Hemsell DL, Martens MG, Faro S, Gall S, McGregor JA. A multicenter study comparing intravenous meropenem with clindamycin plus gentamicin for the treatment of acute gynecologic and obstetric pelvic infections in hospitalized women. Clin Infect Dis. 1997;24(suppl 2):S222-S2230. [PubMed 9126697]
  85. Hendricks KA, Wright ME, Shadomy SV, et al; Workgroup on Anthrax Clinical Guidelines. Centers for Disease Control and Prevention expert panel meetings on prevention and treatment of anthrax in adults. Emerg Infect Dis. 2014;20(2). doi: 10.3201/eid2002.130687. [PubMed 24447897]
  86. Hensgens MP, Goorhuis A, Dekkers OM, Kuijper EJ. Time interval of increased risk for Clostridium difficile infection after exposure to antibiotics. J Antimicrob Chemother. 2012;67(3):742-748. doi:10.1093/jac/dkr508 [PubMed 22146873]
  87. Hnat M, Bawdon RE. Transfer of meropenem in the ex vivo human placenta perfusion model. Infect Dis Obstet Gynecol. 2005;13(4):223-227. [PubMed 16338783]
  88. Huang R, Cai GQ, Zhang JH, et al. Meropenem-induced immune thrombocytopenia and the diagnostic process of laboratory testing. Transfusion. 2017;57(11):2715-2719. doi:10.1111/trf.14267 [PubMed 28782250]
  89. Imani S, Buscher H, Marriott D, Gentili S, Sandaradura I. Too much of a good thing: a retrospective study of β-lactam concentration-toxicity relationships. J Antimicrob Chemother. 2017;72(10):2891-2897. doi:10.1093/jac/dkx209 [PubMed 29091190]
  90. Inglis TJ, Rolim DB, Rodriguez JL. Clinical guideline for diagnosis and management of melioidosis. Rev Inst Med Trop S. Paulo. 2006;48(1):1-4. [PubMed 16547571]
  91. Ito S. Drug therapy for breast-feeding women. N Engl J Med. 2000;343(2):118-126. [PubMed 10891521]
  92. Jamal JA, Mat-Nor MB, Mohamad-Nor FS, et al. Pharmacokinetics of meropenem in critically ill patients receiving continuous venovenous haemofiltration: a randomised controlled trial of continuous infusion versus intermittent bolus administration. Int J Antimicrob Agents. 2015;45(1):41-45. doi:10.1016/j.ijantimicag.2014.09.009 [PubMed 25455853]
  93. Jaruratanasirikul S, Thengyai S, Wongpoowarak W, et al. Population pharmacokinetics and Monte Carlo dosing simulations of meropenem during the early phase of severe sepsis and septic shock in critically ill patients in intensive care units. Antimicrob Agents Chemother. 2015;59(6):2995-3001. doi: 10.1128/AAC.04166-14. [PubMed 25753628]
  94. Khan MU, Yousuf RI, Shoaib MH. Drug utilization evaluation of meropenem and correlation of side effects with renal status of patients in a teaching based hospital. Pak J Pharm Sci. 2014;27(5 Spec no):1503-1508. [PubMed 25176244]
  95. Kalil AC, Metersky ML, Klompas M, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society [published corrections appear in Clin Infect Dis. 2017;64(9):1298; Clin Infect Dis. 2017;65(8):1435; Clin Infect Dis. 2017;65(12):2161]. Clin Infect Dis. 2016;63(5):e61-e111. doi: 10.1093/cid/ciw353. [PubMed 27418577]
  96. Kanj SS, Sexton DJ. Principles of antimicrobial therapy of Pseudomonas aeruginosa infections. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed December 16, 2019a.
  97. Kanj SS, Sexton DJ. Pseudomonas aeruginosa bacteremia and endocarditis. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed December 10, 2019b.
  98. Kanj SS, Sexton DJ. Pseudomonas aeruginosa skin and soft tissue infections. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed June 14, 2022.
  99. Khalel MH, Fattah Saleh SA, F El-Gamal AH, Najem N. Acute generalized exanthematous pustulosis: an unusual side effect of meropenem. Indian J Dermatol. 2010;55(2):176-177. doi:10.4103/0019-5154.62759 [PubMed 20606889]
  100. Klompas M. Treatment of hospital-acquired and ventilator-associated pneumonia in adults. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed January 20, 2022.
  101. Kothekar AT, Divatia JV, Myatra SN, et al. Clinical pharmacokinetics of 3-h extended infusion of meropenem in adult patients with severe sepsis and septic shock: implications for empirical therapy against Gram-negative bacteria. Ann Intensive Care. 2020;10(1):4. doi:10.1186/s13613-019-0622-8 [PubMed 31925610]
  102. Kuti JL, Maglio D, Nightingale CH, Nicolau DP. Economic benefit of a meropenem dosage strategy based on pharmacodynamic concepts. Am J Health Syst Pharm. 2003;60(6):565-568. doi: 10.1093/ajhp/60.6.565. [PubMed 12659058]
  103. Kuti JL, Nicolau DP. Derivation of meropenem dosage in patients receiving continuous veno-venous hemofiltration based on pharmacodynamic target attainment. Chemotherapy. 2005;51(4):211-216. doi: 10.1159/000086598. [PubMed 15985760]
  104. Kuti JL, Nightingale CH, Knauft RF, Nicolau DP. Pharmacokinetic properties and stability of continuous-infusion meropenem in adults with cystic fibrosis. Clin Ther. 2004;26(4):493-501. [PubMed 15189746]
  105. Kuti JL, Pettit RS, Neu N, et al. Meropenem time above the MIC exposure is predictive of response in cystic fibrosis children with acute pulmonary exacerbations. Diagn Microbiol Infect Dis. 2018;91(3):294-297. doi:10.1016/j.diagmicrobio.2018.01.020 [PubMed 29661528]
  106. Langgartner J, Vasold A, Glück T, Reng M, Kees F. Pharmacokinetics of meropenem during intermittent and continuous intravenous application in patients treated by continuous renal replacement therapy. Intensive Care Med. 2008;34(6):1091-1096. doi:10.1007/s00134-008-1034-7 [PubMed 18297267]
  107. Latzin P, Fehling M, Bauernfeind A, Reinhardt D, Kappler M, Griese M. Efficacy and safety of intravenous meropenem and tobramycin versus ceftazidime and tobramycin in cystic fibrosis. J Cyst Fibros. 2008;7(2):142-146. [PubMed 17766190]
  108. Lee Y, Bradley N. Overview and insights into carbapenem allergy. Pharmacy (Basel). 2019;7(3):110. doi:10.3390/pharmacy7030110 [PubMed 31398843]
  109. Lehrnbecher T, Phillips R, Alexander S, et al. Guideline for the management of fever and neutropenia in children with cancer and/or undergoing hematopoietic stem-cell transplantation. J Clin Oncol. 2012;30(35):4427-4438. [PubMed 22987086] 10.1200/JCO.2012.42.7161
  110. Lewis SJ, Kays MB, Mueller BA. Use of Monte Carlo simulations to determine optimal carbapenem dosing in critically ill patients receiving prolonged intermittent renal replacement therapy. J Clin Pharmacol. 2016;56(10):1277-1287. doi:10.1002/jcph.727 [PubMed 26919659]
  111. Li PK, Chow KM, Cho Y, et al. ISPD peritonitis guideline recommendations: 2022 update on prevention and treatment. Perit Dial Int. 2022;42(2):110-153. doi:10.1177/08968608221080586 [PubMed 35264029]
  112. Ling CW, Sud K, Van C, et al. Pharmacokinetics of culture-directed antibiotics for the treatment of peritonitis in automated peritoneal dialysis: a systematic narrative review. Perit Dial Int. 2021;41(3):261-272. doi:10.1177/0896860821990528 [PubMed 33559525]
  113. Lipsitz R, Garges S, Aurigemma R, et al. Workshop on treatment of and postexposure prophylaxis for Burkholderia pseudomallei and B. mallei infection, 2010. Emerg Infect Dis. 2012;18(12):e2. [PubMed 23171644]
  114. Lipsky BA, Berendt AR, Cornia PB, et al; Infectious Diseases Society of America. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis. 2012;54(12):e132-e173. [PubMed 22619242]
  115. Lodise TP, Lomaestro BM, Drusano GL; Society of Infectious Diseases Pharmacists. Application of antimicrobial pharmacodynamic concepts into clinical practice: focus on beta-lactam antibiotics: insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 2006;26(9):1320-1332. doi: 10.1592/phco.26.9.1320. [PubMed 16945055]
  116. Lutsar I, Chazallon C, Trafojer U, et al; NeoMero Consortium. Meropenem vs standard of care for treatment of neonatal late onset sepsis (NeoMero1): A randomised controlled trial. PLoS One. 2020;15(3):e0229380. doi:10.1371/journal.pone.0229380 [PubMed 32130261]
  117. Mancini A, Todd L. Inconsistencies in ISPD peritonitis recommendations: 2016 update on prevention and treatment and the ISPD catheter-related infection recommendations: 2017 update. Perit Dial Int. 2018;38(4):309-310. doi: 10.3747/pdi.2018.00026. [PubMed 29987068]
  118. Martin-Canal G, Saavedra A, Asensi JM, et al. Meropenem monotherapy is as effective as and safer than imipenem to treat brain abscesses. Int J Antimicrob Agents. 2010;35(3):301-304. doi: 10.1016/j.ijantimicag.2009.11.012. [PubMed 20045289]
  119. Mattoes HM, Kuti JL, Drusano GL, Nicolau DP. Optimizing antimicrobial pharmacodynamics: dosage strategies for meropenem. Clin Ther. 2004;26(8):1187-1198. doi:10.1016/s0149-2918(04)80001-8 [PubMed 15476901]
  120. Mazuski JE, Tessier JM, May AK, et al. The Surgical Infection Society revised guidelines on the management of intra-abdominal infection. Surg Infect (Larchmt). 2017;18(1):1-76. doi: 10.1089/sur.2016.261. [PubMed 28085573]
  121. McDonald LC, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66(7):e1-e48. doi:10.1093/cid/cix1085 [PubMed 29462280]
  122. Meng L, Mui E, Holubar MK, Deresinski SC. Comprehensive guidance for antibiotic dosing in obese adults. Pharmacotherapy. 2017;37(11):1415-1431. doi:10.1002/phar.2023 [PubMed 28869666]
  123. Mermel LA, Allon M, Bouza E, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America [published corrections appear in Clin Infect Dis. 2010;50(7):1079; Clin Infect Dis. 2010;50(3):457]. Clin Infect Dis. 2009;49(1):1-45. doi: 10.1086/599376. [PubMed 19489710]
  124. Meropenem for injection and sodium chloride injection Duplex Container [prescribing information]. Bethlehem, PA: B. Braun Medical Inc; May 2020.
  125. Meropenem for injection vial [prescribing information]. Paramus, NJ: WG Critical Care LLC; June 2021.
  126. Metlay JP, Waterer GW, Long AC, et al. Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Resp Crit Care Med. 2019;200(7):e45-e67. doi:10.1164/rccm.201908-1581ST. [PubMed 31573350]
  127. Miller AD, Ball AM, Bookstaver PB, Dornblaser EK, Bennett CL. Epileptogenic potential of carbapenem agents: mechanism of action, seizure rates, and clinical considerations. Pharmacotherapy. 2011;31(4):408-423. doi:10.1592/phco.31.4.408 [PubMed 21449629]
  128. Moehring R, Anderson DJ. Gram-negative bacillary bacteremia in adults. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed December 10, 2019a.
  129. Moehring R, Sarubbi C. Prolonged infusions of beta-lactam antibiotics. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed October 1, 2021b.
  130. Mohr JF 3rd. Update on the efficacy and tolerability of meropenem in the treatment of serious bacterial infections. Clin Infect Dis. 2008;47(suppl 1):S41-51. doi:10.1086/590065 [PubMed 18713049]
  131. Morgado F, Santiago L, Gonçalo M. Safe use of imipenem after delayed hypersensitivity to meropenem-value of patch tests. Contact Dermatitis. 2020;82(3):190-191. doi:10.1111/cod.13435 [PubMed 31742726]
  132. Munoz-Gomez S, Gran A, Cunha BA. Meropenem delirium: a previously unrecognized neurologic side effect. J Chemother. 2015;27(2):120-121. doi:10.1179/1973947814Y.0000000179 [PubMed 24571247]
  133. Nadler HL, Pitkin DH, Sheikh W. The postantibiotic effect of meropenem and imipenem on selected bacteria. J Antimicrob Chemother. 1989;24(suppl A):225-231. doi:10.1093/jac/24.suppl_a.225 [PubMed 2509416]
  134. National Institute for Health and Care Excellence. Drug allergy: diagnosis and management. Published September 3, 2014. Accessed November 19, 2020. https://www.nice.org.uk/guidance/cg183
  135. Naeije G, Lorent S, Vincent JL, Legros B. Continuous epileptiform discharges in patients treated with cefepime or meropenem. Arch Neurol. 2011;68(10):1303-1307. doi:10.1001/archneurol.2011.204 [PubMed 21987544]
  136. Nichols KR, Knoderer CA, Jackson NG, Manaloor JJ, Christenson JC. Success with extended-infusion meropenem after recurrence of baclofen pump-related achromobacter xylosoxidans meningitis in an adolescent. J Pharm Pract. 2015;28(4):430-433. doi:10.1177/0897190015585757 [PubMed 26033796]
  137. Nicolau DP. Pharmacokinetic and pharmacodynamic properties of meropenem. Clin Infect Dis. 2008;47(suppl 1):S32-S40. doi:10.1086/590064 [PubMed 18713048]
  138. Noguerado-Mellado B, Pinto Fernández C, Pineda-Pineda R, Martínez Lezcano P, Álvarez-Perea A, De Barrio Fernández M. Cross-reactivity between carbapenems: two case reports. J Allergy Clin Immunol Pract. 2014;2(6):816-817. doi:10.1016/j.jaip.2014.06.015 [PubMed 25439383]
  139. Odio CM, Puig JR, Feris JM, et al. Prospective, Randomized, Investigator-Blinded Study of the Efficacy and Safety of Meropenem vs. Cefotaxime Therapy in Bacterial Meningitis in Children. Meropenem Meningitis Study Group. Pediatr Infect Dis J. 1999;18(7):581-590. [PubMed 10440432]
  140. Ohata Y, Tomita Y, Nakayama M, Tamura K, Tanigawara Y. Optimal treatment schedule of meropenem for adult patients with febrile neutropenia based on pharmacokinetic-pharmacodynamic analysis. J Infect Chemother. 2011;17(6):831-841. doi: 10.1007/s10156-011-0271-9. [PubMed 21773752]
  141. Oka S, Shiragami H, Nohgawa M. Intravascular hemolytic anemia in a patient with antibodies related to meropenem. Intern Med. 2015;54(10):1291-1295. doi:10.2169/internalmedicine.54.3385 [PubMed 25986273]
  142. Ong CT, Tessier PR, Li C, Nightingale CH, Nicolau DP. Comparative in vivo efficacy of meropenem, imipenem, and cefepime against Pseudomonas aeruginosa expressing MexA-MexB-OprM efflux pumps. Diagn Microbiol Infect Dis. 2007;57(2):153-161. doi:10.1016/j.diagmicrobio.2006.06.014 [PubMed 16930925]
  143. Osmon DR, Berbari EF, Berendt AR, et al. Diagnosis and management of prosthetic joint infection: clinical practice guideline by the Infectious Diseases Society of America. Clin Infect Dis. 2013;56(1):e1-e25. doi: 10.1093/cid/cis803. [PubMed 23223583]
  144. Osmon DR, Tande AJ. Osteomyelitis in adults: treatment. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed December 10, 2019.
  145. Padari H, Metsvaht T, Kõrgvee LT, et al. Short versus long infusion of meropenem in very-low-birth-weight neonates. Antimicrob Agents Chemother. 2012;56(9):4760-4764. doi:10.1128/AAC.00655-12 [PubMed 22733063]
  146. Pai MP, Cojutti P, Pea F. Pharmacokinetics and pharmacodynamics of continuous infusion meropenem in overweight, obese, and morbidly obese patients with stable and unstable kidney function: a step toward dose optimization for the treatment of severe gram-negative bacterial infections. Clin Pharmacokinet. 2015;54(9):933-941. doi:10.1007/s40262-015-0266-2 [PubMed 25850987]
  147. Paquet P, Jacob E, Damas P, Piérard GE. Recurrent fatal drug-induced toxic epidermal necrolysis (Lyell's syndrome) after putative beta-lactam cross-reactivity: case report and scrutiny of antibiotic imputability. Crit Care Med. 2002;30(11):2580-2583. doi:10.1097/00003246-200211000-00029 [PubMed 12441773]
  148. Patel PR, Cook SE. Stability of meropenem in intravenous solutions. Am J Health Syst Pharm. 1997;54(4):412-421. [PubMed 9043564]
  149. Pemberton JH. Acute colonic diverticulitis: medical management. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed January 5, 2023.
  150. Pettit RS, Neu N, Cies JJ, et al. Population pharmacokinetics of meropenem administered as a prolonged infusion in children with cystic fibrosis. J Antimicrob Chemother. 2016;71(1):189-195. doi:10.1093/jac/dkv289 [PubMed 26416780]
  151. Prados-Castaño M, Piñero-Saavedra M, Leguísamo-Milla S, Ortega-Camarero M, Vega-Rioja A. DRESS syndrome induced by meropenem. Allergol Immunopathol (Madr). 2015;43(2):233-235. doi:10.1016/j.aller.2013.12.004 [PubMed 24731770]
  152. Ramirez JA, Musher DM, Evans SE, et al. Treatment of community-acquired pneumonia in immunocompromised adults: a consensus statement regarding initial strategies. Chest. 2020;158(5):1896-1911. doi:10.1016/j.chest.2020.05.598 [PubMed 32561442]
  153. Rapp M, Urien S, Foissac F, et al. Population pharmacokinetics of meropenem in critically ill children with different renal functions. Eur J Clin Pharmacol. 2020;76(1):61-71. doi:10.1007/s00228-019-02761-7 [PubMed 31654149]
  154. Refer to manufacturer's labeling.
  155. Roberts JA, Paul SK, Akova M, et al; DALI Study. DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58(8):1072-1083. doi:10.1093/cid/ciu027 [PubMed 24429437]
  156. Romano A, Gaeta F, Valluzzi RL, Caruso C, Rumi G, Bousquet PJ. IgE-mediated hypersensitivity to cephalosporins: cross-reactivity and tolerability of penicillins, monobactams, and carbapenems. J Allergy Clin Immunol. 2010;126(5):994-999. doi:10.1016/j.jaci.2010.06.052 [PubMed 20888035]
  157. Romano A, Viola M, Guéant-Rodriguez RM, Gaeta F, Valluzzi R, Guéant JL. Brief communication: tolerability of meropenem in patients with IgE-mediated hypersensitivity to penicillins. Ann Intern Med. 2007;146(4):266-269. doi:10.7326/0003-4819-146-4-200702200-00005 [PubMed 17310050]
  158. Rubino CM, Bhavnani SM, Loutit JS, Lohse B, Dudley MN, Griffith DC. Single-dose pharmacokinetics and safety of meropenem-vaborbactam in subjects with chronic renal impairment. Antimicrob Agents Chemother. 2018;62(3):e02103-17. doi:10.1128/AAC.02103-17 [PubMed 29311069]
  159. Sameed M, Nwaiser C, Bhandari P, Schmalzle SA. Meropenem-induced Stevens-Johnson syndrome/toxic epidermal necrolysis in a patient with known type IV penicillin hypersensitivity. BMJ Case Rep. 2019;12(8):e230144. doi:10.1136/bcr-2019-230144 [PubMed 31434673]
  160. Sartelli M, Catena F, Abu-Zidan FM, et al. Management of intra-abdominal infections: recommendations by the WSES 2016 consensus conference. World J Emerg Surg. 2017;12:22. doi: 10.1186/s13017-017-0132-7. [PubMed 28484510]
  161. Sauberan JB, Bradley JS, Blumer J, Stellwagen LM. Transmission of meropenem in breast milk. Pediatr Infect Dis J. 2012;31(8):832-834. [PubMed 22544050]
  162. Sawyer RG, Claridge JA, Nathens AB, et al; STOP-IT Trial Investigators. Trial of short-course antimicrobial therapy for intraabdominal infection. N Engl J Med. 2015;372(21):1996-2005. doi:10.1056/NEJMoa1411162 [PubMed 25992746]
  163. Schmidt GA, Mandel J. Evaluation and management of suspected sepsis and septic shock in adults. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed December 10, 2019.
  164. Sexton DJ, Sampson JH. Intracranial epidural abscess. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed September 16, 2021.
  165. Sexton DJ, Sampson JH. Spinal epidural abscess. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed September 13, 2019b.
  166. Seyler L, Cotton F, Taccone FS, et al. Recommended β-lactam regimens are inadequate in septic patients treated with continuous renal replacement therapy. Crit Care. 2011;15(3):R137. doi:10.1186/cc10257 [PubMed 21649882]
  167. Shabaan AE, Nour I, Elsayed Eldegla H, Nasef N, Shouman B, Abdel-Hady H. Conventional versus prolonged infusion of meropenem in neonates with gram-negative late-onset sepsis: a randomized controlled trial. Pediatr Infect Dis J. 2017;36(4):358-363. doi:10.1097/INF.0000000000001445 [PubMed 27918382]
  168. Shane AL, Mody RK, Crump JA, et al. 2017 Infectious Diseases Society of America clinical practice guidelines for the diagnosis and management of infectious diarrhea. Clin Infect Dis. 2017;65(12):e45-e80. doi:10.1093/cid/cix669 [PubMed 29053792]
  169. Simon RH. Cystic fibrosis: Management of pulmonary exacerbations. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed January 20, 2022.
  170. Sjövall F, Alobaid AS, Wallis SC, Perner A, Lipman J, Roberts JA. Maximally effective dosing regimens of meropenem in patients with septic shock. J Antimicrob Chemother. 2018;73(1):191-198. doi: 10.1093/jac/dkx330. [PubMed 28961812]
  171. Smith PB, Cohen-Wolkowiez M, Castro LM, et al. Population pharmacokinetics of meropenem in plasma and cerebrospinal fluid of infants with suspected or complicated intra-abdominal infections. Pediatr Infect Dis J. 2011;30(10):844-849. [PubMed 21829139]
  172. Solomkin JS, Mazuski JE, Bradley JS, et al. Diagnosis and management of complicated intra-abdominal infections in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America [published correction appears in Clin Infect Dis. 2010;50(12):1695]. Clin Infect Dis. 2010;50(2):133-164. [PubMed 20034345]
  173. Southwick FS. Treatment and prognosis of bacterial brain abscess. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed June 23, 2022.
  174. Spina Silva T, Dal-Prá Ducci R, Zorzetto FP, Braatz VL, de Paola L, Kowacs PA. Meropenem-induced myoclonus: a case report. Seizure. 2014;23(10):912-914. doi:10.1016/j.seizure.2014.06.017 [PubMed 25066813]
  175. Stevens DL, Bisno AL, Chambers HF, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis. 2014;59(2):e10-e52. doi:10.1093/cid/ciu296 [PubMed 24947530]
  176. Szeto CC, Li PK. Concerns regarding inconsistencies within and between ISPD recommendations for peritonitis and catheter-related infections-in reply. Perit Dial Int. 2018;38(4):311-312. doi: 10.3747/pdi.2018.00046. [PubMed 29987069]
  177. Tamatsukuri T, Ohbayashi M, Kohyama N, et al. The exploration of population pharmacokinetic model for meropenem in augmented renal clearance and investigation of optimum setting of dose. J Infect Chemother. 2018;24(10):834-840. doi:10.1016/j.jiac.2018.07.007 [PubMed 30087007]
  178. Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America guidance on the treatment of AmpC β-Lactamase-producing Enterobacterales, Carbapenem-resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia infections. Clin Infect Dis. 2022a;74(12):2089-2114. doi:10.1093/cid/ciab1013 [PubMed 34864936]
  179. Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America 2022 guidance on the treatment of extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), Carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clin Infect Dis. 2022b;75(2):187-212. doi:10.1093/cid/ciac268 [PubMed 35439291]
  180. Tan WW, Watt KM, Boakye-Agyeman F, et al. Optimal dosing of meropenem in a small cohort of critically ill children receiving continuous renal replacement therapy. J Clin Pharmacol. 2021;61(6):744-754. doi:10.1002/jcph.1798 [PubMed 33314163]
  181. Tegeder I, Neumann F, Bremer F, Brune K, Lötsch J, Geisslinger G. Pharmacokinetics of meropenem in critically ill patients with acute renal failure undergoing continuous venovenous hemofiltration. Clin Pharmacol Ther. 1999;65(1):50-57. doi:10.1016/S0009-9236(99)70121-9 [PubMed 9951430]
  182. Thalhammer F, Schenk P, Burgmann H, et al. Single-dose pharmacokinetics of meropenem during continuous venovenous hemofiltration. Antimicrob Agents Chemother. 1998;42(9):2417-2420. [PubMed 9736573]
  183. Thyrum PT, Yeh C, Birmingham B, Lasseter K. Pharmacokinetics of meropenem in patients with liver disease. Clin Infect Dis. 1997;24(suppl 2):S184-S190. doi:10.1093/clinids/24.supplement_2.s184 [PubMed 9126692]
  184. Tröger U, Drust A, Martens-Lobenhoffer J, Tanev I, Braun-Dullaeus RC, Bode-Böger SM. Decreased meropenem levels in intensive care unit patients with augmented renal clearance: benefit of therapeutic drug monitoring. Int J Antimicrob Agents. 2012;40(4):370-372. doi:10.1016/j.ijantimicag.2012.05.010 [PubMed 22795654]
  185. Trotman RL, Williamson JC, Shoemaker DM, Salzer WL. Antibiotic dosing in critically ill adult patients receiving continuous renal replacement therapy. Clin Infect Dis. 2005;41(8):1159-1166. [PubMed 16163635]
  186. Tunkel AR, Hartman BJ, Kaplan SL, et al. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis. 2004;39(9):1267-1284. [PubMed 15494903]
  187. Tunkel AR, Hasbun R, Bhimraj A, et al. 2017 Infectious Diseases Society of America's clinical practice guidelines for healthcare-associated ventriculitis and meningitis. Clin Infect Dis. 2017;64(6):e34-e65.doi:10.1093/cid/ciw861 [PubMed 28203777]
  188. Udy AA, Roberts JA, Boots RJ, Paterson DL, Lipman J. Augmented renal clearance: implications for antibacterial dosing in the critically ill. Clin Pharmacokinet. 2010;49(1):1-16. doi:10.2165/11318140-000000000-00000 [PubMed 20000886]
  189. Ulldemolins M, Soy D, Llaurado-Serra M, et al. Meropenem population pharmacokinetics in critically ill patients with septic shock and continuous renal replacement therapy: influence of residual diuresis on dose requirements. Antimicrob Agents Chemother. 2015;59(9):5520-5528. doi:10.1128/AAC.00712-15 [PubMed 26124172]
  190. van den Anker JN, Pokorna P, Kinzig-Schippers M, et al. Meropenem pharmacokinetics in the newborn. Antimicrob Agents Chemother. 2009;53(9):3871-3879. [PubMed 19581463]
  191. van Ende C, Tintillier M, Cuvelier C, Migali G, Pochet JM. Intraperitoneal meropenem administration: a possible alternative to the intravenous route. Perit Dial Int. 2010;30(2):250-251. doi:10.3747/pdi.2009.00052 [PubMed 20200373]
  192. Van Tuyl JS, Jones AN, Johnson PN. Meropenem-induced neutropenia in a neonate. J Pediatr Pharmacol Ther. 2016;21(4):353-357. doi:10.5863/1551-6776-21.4.353 [PubMed 27713676]
  193. Vardakas KZ, Trigkidis KK, Boukouvala E, Falagas ME. Clostridium difficile infection following systemic antibiotic administration in randomised controlled trials: a systematic review and meta-analysis. Int J Antimicrob Agents. 2016;48(1):1-10. doi:10.1016/j.ijantimicag.2016.03.008 [PubMed 27216385]
  194. Venugopalan V, Manigaba K, Borgert SJ, Cope J, Peloquin CA, Klinker KP. Training a drug to do new tricks: insights on stability of meropenem administered as a continuous infusion. Microbiol Insights. 2018;11:1178636118804549. doi:10.1177/1178636118804549 [PubMed 30349291]
  195. Vlaar PJ, van Hulst M, Benne CA, Janssen WM. Intraperitoneal compared with intravenous meropenem for peritoneal dialysis-related peritonitis. Perit Dial Int. 2013;33(6):708-709. doi:10.3747/pdi.2012.00155 [PubMed 24335130]
  196. Vollmer CM, Zakko SF, Afdhal NH. Treatment of acute calculous cholecystitis. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed April 13, 2023.
  197. Wang Y, Chen W, Huang Y, et al. Optimized dosing regimens of meropenem in septic children receiving extracorporeal life support. Front Pharmacol. 2021;12:699191. doi:10.3389/fphar.2021.699191 [PubMed 34504424]
  198. Watson T, Hickok J, Fraker S, Korwek K, Poland RE, Septimus E. Evaluating the risk factors for hospital-onset Clostridium difficile infections in a large healthcare system. Clin Infect Dis. 2018;66(12):1957-1959. doi:10.1093/cid/cix1112 [PubMed 29272341]
  199. Weintrob AC, Sexton DJ. Clinical manifestations, diagnosis, and management of diabetic infections of the lower extremities. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed November 24, 2020.
  200. Wiesholzer M, Pichler P, Reznicek G, et al. An open, randomized, single-center, crossover pharmacokinetic study of meropenem after intraperitoneal and intravenous administration in patients receiving automated peritoneal dialysis. Antimicrob Agents Chemother. 2016;60(5):2790-2797. doi:10.1128/AAC.02664-15 [PubMed 26902765]
  201. Wingard JR. Treatment of neutropenic fever syndromes in adults with hematologic malignancies and hematopoietic cell transplant recipients (high-risk patients). Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed December 10, 2020.
  202. Wong Kee Song L-M, Marcon NE. Neutropenic enterocolitis (typhlitis). Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed December 10, 2020.
  203. World Health Organization (WHO). Breastfeeding and maternal medication, recommendations for drugs in the eleventh WHO model list of essential drugs. 2002. Available at http://www.who.int/maternal_child_adolescent/documents/55732/en/
  204. Xie X, Xiang B, Wu Y, Zhao Y, Wang Q, Jiang X. Infant progressive colonic stenosis caused by antibiotic-related Clostridium difficile colitis - a case report and literature review. BMC Pediatr. 2018;18(1):320. doi:10.1186/s12887-018-1302-9 [PubMed 30301467]
  205. Yahav D, Franceschini E, Koppel F, et al; Bacteremia Duration Study Group. Seven versus fourteen days of antibiotic therapy for gram-negative bacteremia: a non-inferiority randomized controlled trial [published online ahead of print December 11, 2018]. Clin Infect Dis. doi: 10.1093/cid/ciy1054. [PubMed 30535100]
  206. Yildirim I, Aytac S, Ceyhan M, et al. Piperacillin/tazobactam plus amikacin versus carbapenem monotherapy as empirical treatment of febrile neutropenia in childhood hematological malignancies. Pediatr Hematol Oncol. 2008;25(4):291-299. [PubMed 18484473] 10.1080/08880010802016847
  207. Yoshida M, Matsuda H, Furuya K. Successful prognosis of brain abscess during pregnancy. J Reprod Infertil. 2013;14(3):152-155. [PubMed 24163800]
  208. Yu Z, Pang X, Wu X, Shan C, Jiang S. Clinical outcomes of prolonged infusion (extended infusion or continuous infusion) versus intermittent bolus of meropenem in severe infection: a meta-analysis. PLoS One. 2018;13(7):e0201667. doi: 10.1371/journal.pone.0201667. [PubMed 30059536]
  209. Zhanel GG, Wiebe R, Dilay L, et al. Comparative review of the carbapenems. Drugs. 2007;67(7):1027-1052. doi:10.2165/00003495-200767070-00006. [PubMed 17488146]
  210. Zobell JT, Ferdinand C, Young DC. Continuous infusion meropenem and ticarcillin-clavulanate in pediatric cystic fibrosis patients. Pediatr Pulmonol. 2014;49(3):302-306. doi:10.1002/ppul.22820 [PubMed 23775821]
  211. Zobell JT, Young DC, Waters CD, et al. Optimization of anti-pseudomonal antibiotics for cystic fibrosis pulmonary exacerbations: I. aztreonam and carbapenems. Pediatr Pulmonol. 2012;47(12):1147-1158. doi: 10.1002/ppul.22655. [PubMed 22911974]
Topic 12583 Version 414.0

آیا می خواهید مدیلیب را به صفحه اصلی خود اضافه کنید؟