ﺑﺎﺯﮔﺸﺖ ﺑﻪ ﺻﻔﺤﻪ ﻗﺒﻠﯽ
خرید پکیج
تعداد آیتم قابل مشاهده باقیمانده : 3 مورد
نسخه الکترونیک
medimedia.ir

Ibutilide: Drug information

Ibutilide: Drug information
(For additional information see "Ibutilide: Patient drug information")

For abbreviations, symbols, and age group definitions used in Lexicomp (show table)
ALERT: US Boxed Warning
Life-threatening arrhythmias:

Ibutilide can cause potentially fatal arrhythmias, particularly sustained polymorphic ventricular tachycardia usually in association with QT prolongation (torsades de pointes), but sometimes without documented QT prolongation. In registration studies, these arrhythmias, which require cardioversion, occurred in 1.7% of treated patients during or within a number of hours of using ibutilide.

These arrhythmias can be reversed if treated promptly. It is essential that ibutilide be administered in a setting of continuous ECG monitoring and by personnel trained in identification and treatment of acute ventricular arrhythmias, particularly polymorphic ventricular tachycardia. Patients with atrial fibrillation of more than 2 to 3 days' duration must be adequately anticoagulated, generally for at least 2 weeks.

Appropriate treatment environment:

Choice of patients: Patients with chronic atrial fibrillation have a strong tendency to revert after conversion to sinus rhythm and treatments to maintain sinus rhythm carry risks. Patients to be treated with ibutilide, therefore, should be carefully selected such that the expected benefits of maintaining sinus rhythm outweigh the immediate risks of ibutilide, and the risks of maintenance therapy, and are likely to offer an advantage compared with alternative management.

Brand Names: US
  • Corvert
Brand Names: Canada
  • Corvert
Pharmacologic Category
  • Antiarrhythmic Agent, Class III
Dosing: Adult
Atrial fibrillation/flutter

Atrial fibrillation/flutter: IV:

<60 kg: 0.01 mg/kg over 10 minutes

≥60 kg: 1 mg over 10 minutes

Note: Discontinue as soon as arrhythmia terminates, if sustained or nonsustained ventricular tachycardia occurs, or if marked prolongation of QT/QTc occurs. If the arrhythmia does not terminate within 10 minutes after the end of the initial infusion, a second 10-minute infusion of equal strength may be infused 10 minutes after completion of the initial infusion.

Dosage adjustment for concomitant therapy: Significant drug interactions exist, requiring dose/frequency adjustment or avoidance. Consult drug interactions database for more information.

Dosing: Kidney Impairment: Adult

No dosage adjustment necessary.

Dosing: Hepatic Impairment: Adult

No dosage adjustment necessary.

Dosing: Older Adult

Refer to adult dosing. Dose selection should be cautious, usually starting at the lower end of the dosing range.

Adverse Reactions

The following adverse drug reactions and incidences are derived from product labeling unless otherwise specified.

1% to 10%:

Cardiovascular: Nonsustained monomorphic ventricular tachycardia (5%), ventricular premature contractions (5), unsustained polymorphic ventricular tachycardia (3%), supraventricular tachycardia (≤3%), tachycardia (≤3%), atrioventricular block (2%), bundle branch block (2%), hypotension (2%), sustained polymorphic ventricular tachycardia (2%; eg, torsade de pointes; often requiring cardioversion), bradycardia (1%), hypertension (1%), palpitations (1%), prolonged QT interval on ECG (1%)

Central nervous system: Headache (4%)

Gastrointestinal: Nausea (>1%)

<1%, postmarketing, and/or case reports: Bullous rash (erythematous), cardiac failure, idioventricular rhythm, nodal arrhythmia, renal failure, supraventricular extrasystole, sustained monomorphic ventricular tachycardia

Contraindications

Hypersensitivity to ibutilide or any component of the formulation

Warnings/Precautions

Concerns related to adverse effects:

• Proarrhythmic effects: [US Boxed Warning]: Potentially fatal arrhythmias, particularly sustained polymorphic ventricular tachycardia can occur, usually in association with torsades des pointes (QT prolongation), but sometimes without documented QT prolongation. Studies indicate a 1.7% incidence of arrhythmias in treated patients. These arrhythmias can be reversed if treated promptly. It is essential that ibutilide be administered in a setting of continuous ECG monitoring and by personnel trained in identification and treatment of acute ventricular arrhythmias. Patients with atrial fibrillation of more than 2 to 3 days' duration must be adequately anticoagulated, generally for at least 2 weeks. The use of intravenous magnesium (2 g) immediately prior to and after ibutilide administration has been shown to be helpful in reducing QT interval prolongation due to ibutilide (Caron 2003) and may enhance the efficacy of ibutilide (Kalus 2003). Whether or not prophylactic magnesium reduces the incidence of TdP has yet to be determined; however, it is thought that this measure will reduce the incidence of TdP (Coleman 2004). Consider avoiding use in patients with QTc intervals >440 msec. Use is not recommended in patients who have previously demonstrated polymorphic ventricular tachycardia (eg, torsades de pointes).

Disease-related concerns:

• Chronic atrial fibrillation: [US Boxed Warning]: Patients with chronic atrial fibrillation may not be the best candidates for ibutilide since they often revert after conversion and the risks of treatment may not be justified when compared to alternative management. Patients to be treated with ibutilide should be carefully selected such that the expected benefits outweigh the immediate risks.

• Electrolyte imbalance: Correct electrolyte disturbances, especially hypokalemia or hypomagnesemia, prior to use and throughout therapy.

Other warnings/precautions:

• CAST trial: In the Cardiac Arrhythmia Suppression Trial (CAST), recent (>6 days but <2 years ago) myocardial infarction patients with asymptomatic, non-life-threatening ventricular arrhythmias did not benefit and may have been harmed by attempts to suppress the arrhythmia with flecainide or encainide. An increased mortality or nonfatal cardiac arrest rate (7.7%) was seen in the active treatment group compared with patients in the placebo group (3%). The applicability of the CAST results to other populations is unknown. Antiarrhythmic agents should be reserved for patients with life-threatening ventricular arrhythmias.

Dosage Forms: US

Excipient information presented when available (limited, particularly for generics); consult specific product labeling.

Solution, Intravenous, as fumarate:

Generic: 1 mg/10 mL (10 mL)

Solution, Intravenous, as fumarate [preservative free]:

Corvert: 1 mg/10 mL (10 mL)

Generic Equivalent Available: US

Yes

Pricing: US

Solution (Corvert Intravenous)

1 mg/10 mL (per mL): $65.86

Solution (Ibutilide Fumarate Intravenous)

1 mg/10 mL (per mL): $37.29

Disclaimer: A representative AWP (Average Wholesale Price) price or price range is provided as reference price only. A range is provided when more than one manufacturer's AWP price is available and uses the low and high price reported by the manufacturers to determine the range. The pricing data should be used for benchmarking purposes only, and as such should not be used alone to set or adjudicate any prices for reimbursement or purchasing functions or considered to be an exact price for a single product and/or manufacturer. Medi-Span expressly disclaims all warranties of any kind or nature, whether express or implied, and assumes no liability with respect to accuracy of price or price range data published in its solutions. In no event shall Medi-Span be liable for special, indirect, incidental, or consequential damages arising from use of price or price range data. Pricing data is updated monthly.

Dosage Forms: Canada

Excipient information presented when available (limited, particularly for generics); consult specific product labeling.

Solution, Intravenous, as fumarate:

Corvert: 0.1 mg/mL (10 mL)

Administration: Adult

IV: Infuse undiluted or diluted over 10 minutes.

Use: Labeled Indications

Atrial fibrillation/flutter: Rapid conversion of atrial fibrillation or atrial flutter of recent onset to sinus rhythm (effectiveness has not been determined in patients with arrhythmias >90 days in duration).

Note: According to the American Heart Association/American College of Cardiology/Heart Rhythm Society guidelines for the management of atrial fibrillation, in patients with pre-excited atrial fibrillation and rapid ventricular response who are not hemodynamically compromised, the use of ibutilide to restore sinus rhythm or slow the ventricular rate is recommended (AHA/ACC/HRS [January 2014]).

Use: Off-Label: Adult

Facilitation of transthoracic electrical cardioversion for atrial fibrillation; Postoperative atrial fibrillation

Medication Safety Issues
High alert medication:

The Institute for Safe Medication Practices (ISMP) includes this medication among its list of drugs which have a heightened risk of causing significant patient harm when used in error.

Metabolism/Transport Effects

None known.

Drug Interactions

Note: Interacting drugs may not be individually listed below if they are part of a group interaction (eg, individual drugs within “CYP3A4 Inducers [Strong]” are NOT listed). For a complete list of drug interactions by individual drug name and detailed management recommendations, use the Lexicomp drug interactions program by clicking on the “Launch drug interactions program” link above.

Amiodarone: QT-prolonging Class III Antiarrhythmics (Highest Risk) may enhance the QTc-prolonging effect of Amiodarone. Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Amisulpride (Oral): QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Amisulpride (Oral). Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even greater risk. Risk D: Consider therapy modification

Azithromycin (Systemic): QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Azithromycin (Systemic). Management: Consider alternatives to this combination. Patients with other risk factors (eg, older age, female sex, bradycardia, hypokalemia, hypomagnesemia, heart disease, and higher drug concentrations) are likely at greater risk for these toxicities. Risk D: Consider therapy modification

Carbetocin: May enhance the QTc-prolonging effect of QT-prolonging Agents (Highest Risk). Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Ceritinib: QT-prolonging Class III Antiarrhythmics (Highest Risk) may enhance the QTc-prolonging effect of Ceritinib. Ceritinib may enhance the QTc-prolonging effect of QT-prolonging Class III Antiarrhythmics (Highest Risk). Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Chloroquine: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Chloroquine. Management: Consider alternatives to this combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Citalopram: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Citalopram. Risk X: Avoid combination

Clarithromycin: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Clarithromycin. Risk X: Avoid combination

Clofazimine: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Clofazimine. Management: Consider alternatives to this combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

ClomiPRAMINE: May enhance the QTc-prolonging effect of QT-prolonging Agents (Highest Risk). Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

CloZAPine: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of CloZAPine. Management: Consider alternatives to this combination. Patients with other risk factors (eg, older age, female sex, bradycardia, hypokalemia, hypomagnesemia, heart disease, and higher drug concentrations) are likely at greater risk for these toxicities. Risk D: Consider therapy modification

Dabrafenib: May enhance the QTc-prolonging effect of QT-prolonging Agents (Highest Risk). Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Dasatinib: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Dasatinib. Management: Consider alternatives to this combination. Patients with other risk factors (eg, older age, female sex, bradycardia, hypokalemia, hypomagnesemia, heart disease, and higher drug concentrations) are likely at greater risk for these toxicities. Risk D: Consider therapy modification

Domperidone: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Domperidone. Risk X: Avoid combination

Doxepin-Containing Products: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Doxepin-Containing Products. Management: Consider alternatives to this combination. Patients with other risk factors (eg, older age, female sex, bradycardia, hypokalemia, hypomagnesemia, heart disease, and higher drug concentrations) are likely at greater risk for these toxicities. Risk D: Consider therapy modification

DroPERidol: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of DroPERidol. Management: Consider alternatives to this combination. Patients with other risk factors (eg, older age, female sex, bradycardia, hypokalemia, hypomagnesemia, heart disease, and higher drug concentrations) are likely at greater risk for these toxicities. Risk D: Consider therapy modification

Encorafenib: May enhance the QTc-prolonging effect of QT-prolonging Agents (Highest Risk). Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Entrectinib: May enhance the QTc-prolonging effect of QT-prolonging Agents (Highest Risk). Risk X: Avoid combination

Erythromycin (Systemic): QT-prolonging Class III Antiarrhythmics (Highest Risk) may enhance the QTc-prolonging effect of Erythromycin (Systemic). Erythromycin (Systemic) may enhance the QTc-prolonging effect of QT-prolonging Class III Antiarrhythmics (Highest Risk). Management: Avoid concomitant use of erythromycin and class III antiarrhythmic agents. Use of erythromycin with dronedarone is specifically contraindicated. Risk X: Avoid combination

Escitalopram: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Escitalopram. Management: Consider alternatives to this combination. Patients with other risk factors (eg, older age, female sex, bradycardia, hypokalemia, hypomagnesemia, heart disease, and higher drug concentrations) are likely at greater risk for these toxicities. Risk D: Consider therapy modification

Etelcalcetide: May enhance the QTc-prolonging effect of QT-prolonging Agents (Highest Risk). Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Fexinidazole: May enhance the QTc-prolonging effect of QT-prolonging Agents (Highest Risk). Risk X: Avoid combination

Fingolimod: May enhance the QTc-prolonging effect of QT-prolonging Class III Antiarrhythmics (Highest Risk). Risk X: Avoid combination

Flecainide: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Flecainide. Management: Consider alternatives to this combination. Patients with other risk factors (eg, older age, female sex, bradycardia, hypokalemia, hypomagnesemia, heart disease, and higher drug concentrations) are likely at greater risk for these toxicities. Risk D: Consider therapy modification

Fluorouracil Products: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Fluorouracil Products. Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Flupentixol: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Flupentixol. Risk X: Avoid combination

Gadobenate Dimeglumine: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Gadobenate Dimeglumine. Management: Consider alternatives to this combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Gemifloxacin: May enhance the QTc-prolonging effect of QT-prolonging Class III Antiarrhythmics (Highest Risk). Risk X: Avoid combination

Gilteritinib: May enhance the QTc-prolonging effect of QT-prolonging Agents (Highest Risk). Management: Consider alternatives to this combination. If use is necessary, monitor for QTc interval prolongation and arrhythmias. Risk D: Consider therapy modification

Halofantrine: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Halofantrine. Management: Consider alternatives to this combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Haloperidol: QT-prolonging Class III Antiarrhythmics (Highest Risk) may enhance the QTc-prolonging effect of Haloperidol. Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

HydrOXYzine: May enhance the QTc-prolonging effect of QT-prolonging Agents (Highest Risk). Risk C: Monitor therapy

Imipramine: May enhance the QTc-prolonging effect of QT-prolonging Agents (Highest Risk). Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Inotuzumab Ozogamicin: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Inotuzumab Ozogamicin. Management: Consider alternatives to this combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Lacosamide: Antiarrhythmic Agents (Class III) may enhance the adverse/toxic effect of Lacosamide. Specifically the risk for bradycardia, ventricular tachyarrhythmias, or a prolonged PR interval may be increased. Risk C: Monitor therapy

Landiolol: May enhance the adverse/toxic effect of QT-prolonging Class III Antiarrhythmics (Highest Risk). Risk C: Monitor therapy

Levofloxacin-Containing Products (Systemic): May enhance the QTc-prolonging effect of QT-prolonging Class III Antiarrhythmics (Highest Risk). Risk X: Avoid combination

Levoketoconazole: QT-prolonging Class III Antiarrhythmics (Highest Risk) may enhance the QTc-prolonging effect of Levoketoconazole. Risk X: Avoid combination

Lofexidine: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Lofexidine. Management: Consider alternatives to this combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Meglumine Antimoniate: May enhance the QTc-prolonging effect of QT-prolonging Agents (Highest Risk). Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Methadone: QT-prolonging Class III Antiarrhythmics (Highest Risk) may enhance the QTc-prolonging effect of Methadone. Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Midostaurin: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Midostaurin. Management: Consider alternatives to this combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Moxifloxacin (Systemic): QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Moxifloxacin (Systemic). Risk X: Avoid combination

Nilotinib: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Nilotinib. Risk X: Avoid combination

OLANZapine: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of OLANZapine. Management: Consider alternatives to this combination. Patients with other risk factors (eg, older age, female sex, bradycardia, hypokalemia, hypomagnesemia, heart disease, and higher drug concentrations) are likely at greater risk for these toxicities. Risk D: Consider therapy modification

Ondansetron: QT-prolonging Class III Antiarrhythmics (Highest Risk) may enhance the QTc-prolonging effect of Ondansetron. Management: Consider alternatives to this combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Osimertinib: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Osimertinib. Management: Consider alternatives to this combination. Patients with other risk factors (eg, older age, female sex, bradycardia, hypokalemia, hypomagnesemia, heart disease, and higher drug concentrations) are likely at greater risk for these toxicities. Risk D: Consider therapy modification

Oxytocin: May enhance the QTc-prolonging effect of QT-prolonging Agents (Highest Risk). Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Pacritinib: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Pacritinib. Management: Monitor for QTc interval prolongation and ventricular arrhythmias when these agents are combined. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk C: Monitor therapy

PAZOPanib: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of PAZOPanib. Risk X: Avoid combination

Pentamidine (Systemic): QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Pentamidine (Systemic). Management: Consider alternatives to this combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Pilsicainide: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Pilsicainide. Management: Consider alternatives to this combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Pimozide: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Pimozide. Management: Consider alternatives to this combination. Patients with other risk factors (eg, older age, female sex, bradycardia, hypokalemia, hypomagnesemia, heart disease, and higher drug concentrations) are likely at greater risk for these toxicities. Risk X: Avoid combination

Piperaquine: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Piperaquine. Risk X: Avoid combination

Probucol: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Probucol. Risk X: Avoid combination

Propafenone: May enhance the QTc-prolonging effect of QT-prolonging Class III Antiarrhythmics (Highest Risk). Risk X: Avoid combination

Propofol: May enhance the QTc-prolonging effect of QT-prolonging Agents (Highest Risk). Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

QT-prolonging Agents (Indeterminate Risk - Avoid): May enhance the QTc-prolonging effect of QT-prolonging Agents (Highest Risk). Management: Monitor for QTc interval prolongation and ventricular arrhythmias when these agents are combined. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk C: Monitor therapy

QT-prolonging Agents (Indeterminate Risk - Caution): May enhance the QTc-prolonging effect of QT-prolonging Agents (Highest Risk). Management: Monitor for QTc interval prolongation and ventricular arrhythmias when these agents are combined. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk C: Monitor therapy

QT-prolonging Class IA Antiarrhythmics (Highest Risk): May enhance the QTc-prolonging effect of QT-prolonging Class III Antiarrhythmics (Highest Risk). Risk X: Avoid combination

QT-prolonging Class III Antiarrhythmics (Highest Risk): May enhance the QTc-prolonging effect of other QT-prolonging Class III Antiarrhythmics (Highest Risk). Risk X: Avoid combination

QT-Prolonging Inhalational Anesthetics (Moderate Risk): May enhance the QTc-prolonging effect of QT-prolonging Agents (Highest Risk). Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

QT-prolonging Kinase Inhibitors (Highest Risk): May enhance the QTc-prolonging effect of QT-prolonging Class III Antiarrhythmics (Highest Risk). Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

QT-prolonging Miscellaneous Agents (Highest Risk): QT-prolonging Class III Antiarrhythmics (Highest Risk) may enhance the QTc-prolonging effect of QT-prolonging Miscellaneous Agents (Highest Risk). Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk): QT-prolonging Class III Antiarrhythmics (Highest Risk) may enhance the QTc-prolonging effect of QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk). QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk) may increase the serum concentration of QT-prolonging Class III Antiarrhythmics (Highest Risk). Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

QT-prolonging Strong CYP3A4 Inhibitors (Highest Risk): QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of QT-prolonging Strong CYP3A4 Inhibitors (Highest Risk). Management: Consider alternatives to this combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

QT-prolonging Strong CYP3A4 Inhibitors (Moderate Risk): QT-prolonging Class III Antiarrhythmics (Highest Risk) may enhance the QTc-prolonging effect of QT-prolonging Strong CYP3A4 Inhibitors (Moderate Risk). QT-prolonging Strong CYP3A4 Inhibitors (Moderate Risk) may increase the serum concentration of QT-prolonging Class III Antiarrhythmics (Highest Risk). Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

QUEtiapine: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of QUEtiapine. Risk X: Avoid combination

Quizartinib: May enhance the QTc-prolonging effect of QT-prolonging Agents (Highest Risk). Management: Consider alternatives to this combination. Patients with other risk factors (eg, older age, female sex, bradycardia, hypokalemia, hypomagnesemia, heart disease, and higher drug concentrations) are likely at greater risk for these toxicities. Risk D: Consider therapy modification

Ribociclib: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Ribociclib. Risk X: Avoid combination

RisperiDONE: QT-prolonging Agents (Highest Risk) may enhance the CNS depressant effect of RisperiDONE. QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of RisperiDONE. Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk D: Consider therapy modification

Sertindole: May enhance the QTc-prolonging effect of QT-prolonging Agents (Highest Risk). Risk X: Avoid combination

Sparfloxacin: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Sparfloxacin. Risk X: Avoid combination

SUNItinib: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of SUNItinib. Management: Consider alternatives to this combination. Patients with other risk factors (eg, older age, female sex, bradycardia, hypokalemia, hypomagnesemia, heart disease, and higher drug concentrations) are likely at greater risk for these toxicities. Risk D: Consider therapy modification

Terbutaline: May enhance the QTc-prolonging effect of QT-prolonging Agents (Highest Risk). Management: Consider alternatives to this combination. Patients with other risk factors (eg, older age, female sex, bradycardia, hypokalemia, hypomagnesemia, heart disease, and higher drug concentrations) are likely at greater risk for these toxicities. Risk D: Consider therapy modification

Thioridazine: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Thioridazine. Risk X: Avoid combination

Toremifene: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Toremifene. Management: Consider alternatives to this combination. Patients with other risk factors (eg, older age, female sex, bradycardia, hypokalemia, hypomagnesemia, heart disease, and higher drug concentrations) are likely at greater risk for these toxicities. Risk D: Consider therapy modification

Vemurafenib: QT-prolonging Agents (Highest Risk) may enhance the QTc-prolonging effect of Vemurafenib. Management: Consider alternatives to this combination. Patients with other risk factors (eg, older age, female sex, bradycardia, hypokalemia, hypomagnesemia, heart disease, and higher drug concentrations) are likely at greater risk for these toxicities. Risk D: Consider therapy modification

Pregnancy Considerations

Use in pregnancy may be considered (Regitz-Zagrosek [ESC 2018]); however, information related to the use of ibutilide in pregnancy is limited (Burkart 2007; Kockova 2007).

Breastfeeding Considerations

It is not known if ibutilide is present in breast milk.

Breastfeeding is not recommended by the manufacturer.

Monitoring Parameters

Electrolytes; observe patient with continuous ECG monitoring for at least 4 hours (>4 hours in patients with abnormal hepatic function or if arrhythmic activity is noted) following infusion or until QTc has returned to baseline; skilled personnel and proper equipment should be available during administration and subsequent monitoring

Consult individual institutional policies and procedures.

Mechanism of Action

Vaughan Williams class III antiarrhythmic agent that prolongs myocardial action potential duration (APD) and increases atrial and ventricular refractoriness primarily by activation of a slow inward sodium current (INa-s), in contrast to other agents in this class. Ibutilide also delays repolarization by inhibiting the rapid component of the delayed rectifier potassium current (IKr), though the relative contribution of this mechanism to the antiarrhythmic activity of ibutilide is not known (Cimini 1992; Foster 1997; Lee 1992; Yang 1995).

Pharmacokinetics (Adult Data Unless Noted)

Onset of action: Conversion to sinus rhythm: ≤90 minutes after start of infusion

Distribution: Vdss: ~11 L/kg

Protein binding: ~40%

Metabolism: Extensively hepatic; 8 metabolites via oxidation (only 1 active metabolite)

Half-life elimination: ~6 hours (range: 2 to 12 hours)

Excretion: Urine (~82%; ~7% unchanged); feces (~19%)

Brand Names: International
International Brand Names by Country
For country code abbreviations (show table)

  • (AT) Austria: Corvert;
  • (FI) Finland: Corvert;
  • (FR) France: Corvert;
  • (GR) Greece: Corvert;
  • (IN) India: Fibricor;
  • (IT) Italy: Corvert;
  • (NO) Norway: Corvert;
  • (PR) Puerto Rico: Corvert;
  • (PT) Portugal: Corvert;
  • (RU) Russian Federation: Corvert;
  • (SE) Sweden: Corvert;
  • (SI) Slovenia: Corvert
  1. Burkart TA, Kron J, Miles WM, et al. Successful termination of atrial flutter by ibutilide during pregnancy. Pacing Clin Electrophysiol. 2007;30(2):283-286. [PubMed 17338730]
  2. Caron MF, Kluger J, Tsikouris JP, et al. Effects of intravenous magnesium sulfate on the QT interval in patients receiving ibutilide. Pharmacotherapy. 2003;23(3):296-300. [PubMed 12627926]
  3. Cimini MG, Brunden MN, Gibson JK. Effects of ibutilide fumarate, a novel antiarrhythmic agent, and its enantiomers on isolated rabbit myocardium. Eur J Pharmacol. 1992;222(1):93-98. [PubMed 1361444]
  4. Coleman CI, Kalus JS, Caron MF, et al. Model of effect of magnesium prophylaxis on frequency of torsades de pointes in ibutilide-treated patients. Am J Health Syst Pharm. 2004;61(7):685-688. [PubMed 15119574]
  5. Corvert (ibutilide) [prescribing information]. New York, NY: Pfizer; August 2016.
  6. Foster RH, Wilde MI, Markham A. Ibutilide. A review of its pharmacological properties and clinical potential in the acute management of atrial flutter and fibrillation. Drugs. 1997;54(2):312-330. [PubMed 9257085]
  7. January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society [published online March 28, 2014]. Circulation. [PubMed 24682347]
  8. January CT, Wann LS, Calkins H, et al. 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients with Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm. 2019. pii: S1547-5271(19)30037-2. doi: 10.1016/j.hrthm.2019.01.024. [PubMed 30703530]
  9. Kalus JS, Spencer AP, Tsikouris JP, et al. Impact of prophylactic I.V. magnesium on the efficacy of ibutilide for conversion of atrial fibrillation or flutter. Am J Health Syst Pharm. 2003. 60(22):2308-2312. [PubMed 14652979]
  10. Kockova R, Kocka V, Kiernan T, et al. Ibutilide-induced cardioversion of atrial fibrillation during pregnancy. J Cardiovasc Electrophysiol. 2007;18(5):545-547. [PubMed 17286570]
  11. Lee KS. Ibutilide, a new compound with potent class III antiarrhythmic activity, activates a slow inward Na+ current in guinea pig ventricular cells. J Pharmacol Exp Ther. 1992;262(1):99-108. [PubMed 1320693]
  12. Oral H, Souza JJ, Michaud GF, et al. Facilitating transthoracic cardioversion of atrial fibrillation with ibutilide pretreatment. N Engl J Med. 1999;340(24):1849-1854. [PubMed 10369847]
  13. Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J. 2018;39(34):3165-3241. [PubMed 30165544]
  14. VanderLugt JT, Mattioni T, Denker S, et al. Efficacy and safety of ibutilide fumarate for the conversion of atrial arrhythmias after cardiac surgery. Circulation. 1999;100(4):369-375. [PubMed 10421596]
  15. Yang T, Snyders DJ, Roden DM. Ibutilide, a methanesulfonanilide antiarrhythmic, is a potent blocker of the rapidly activating delayed rectifier K+ current (IKr) in AT-1 cells. Concentration-, time-, voltage-, and use-dependent effects. Circulation. 1995;91(6):1799-1806. [PubMed 7882490]
Topic 8548 Version 213.0

آیا می خواهید مدیلیب را به صفحه اصلی خود اضافه کنید؟