Zhen Zhang, Wan Jun Lee & Yong Wang
doi : 10.1080/10408398.2020.1793725
Volume 61, Issue 19, Pages 3145-3159
Enzymatic interesterification (EIE) is one of the emerging technologies in the specialty fats industry. EIE has several advantages over the conventional chemical interesterification method, such that the process has higher flexibility and efficiency, is environmentally friendly and the immobilized enzyme can be recycled besides of the lower requirement for substrate’s acid value. The physical properties and nutritional qualities of the fats and oils are modified after EIE, depending on the change in the position of fatty acids on the triacylglycerol (TAG) molecules. Evaluation of the interesterification reaction are important and useful in terms of its technological applications. This paper summarizes the conventional methods and the advancement for evaluating EIE processes, e.g., determination of the change in slip melting points, solid fat contents, TAG with equivalent carbon numbers, and sn-2 fatty acid compositions of the end product. Nonetheless, these methods are not comprehensive because during the EIE process, acyl migration occurs. A novel and convenient evaluation model which is based on the fatty acid distribution on the glycerol-backbone is proposed as a perspective. This model can be employed to monitor the interesterification degree and acyl migration during a regiospecific EIE process, which serves as a reaction rule that can be employed to control and optimize the EIE process, thereby producing structured TAG with desired properties.
Asghar Taheri-Kafrani, Sara Kharazmi, Mahmoud Nasrollahzadeh, Asieh Soozanipour, Fatemeh Ejeian, Parisa Etedali, Hajar-Alsadat Mansouri-Tehrani, Amir Razmjou, Samaneh Mahmoudi-Gom Yek & Rajender S. Varma
doi : 10.1080/10408398.2020.1793726
Volume 61, Issue 19, Pages 3160-3196
The demand for food and beverage markets has increased as a result of population increase and in view of health awareness. The quality of products from food processing industry has to be improved economically by incorporating greener methodologies that enhances the safety and shelf life via the enzymes application while maintaining the essential nutritional qualities. The utilization of enzymes is rendered more favorable in industrial practices via the modification of their characteristics as attested by studies on enzyme immobilization pertaining to different stages of food and beverage processing; these studies have enhanced the catalytic activity, stability of enzymes and lowered the overall cost. However, the harsh conditions of industrial processes continue to increase the propensity of enzyme destabilization thus shortening their industrial lifespan namely enzyme leaching, recoverability, uncontrollable orientation and the lack of a general procedure. Innovative studies have strived to provide new tools and materials for the development of systems offering new possibilities for industrial applications of enzymes. Herein, an effort has been made to present up-to-date developments on enzyme immobilization and current challenges in the food and beverage industries in terms of enhancing the enzyme stability.
Praveen Saini, Nitin Kumar, Sunil Kumar, Peter Waboi Mwaurah, Anil Panghal, Arun Kumar Attkan, Vijay Kumar Singh, Mukesh Kumar Garg & Vijay Singh
doi : 10.1080/10408398.2020.1793727
Volume 61, Issue 19, Pages 3197-3210
The consumers’ demands have changed from energy providing diet to a diet with a balanced nutrient profile along with metabolic, physiological and functional health benefits. They are seeking colorants derived from natural sources to enhance the nutritional and antioxidant value of foods. Colored wheat (Triticum aestivum) contains many phytochemicals, responsible for numerous health benefits. Colored wheat (blue, black, purple and red) contains a good amount of anthocyanins and carotenoids that are primarily located in the outer aleurone layer. Food regulatory and safety authorities and food processing industries are trying to minimize the usage of synthetic food colorants and dyes. Colored wheat is imperative for food processing industries as high-value pigments present in the bran layer (milling industry co-product) can easily be extracted and utilized as functional foods and natural colorants. The extracted pigments such as anthocyanin can replace synthetic dyes currently used in food, drug and cosmetics. Additionally, natural additives improve the nutritional value, appearance, texture, flavor, and storage properties of food products. This review presents a brief knowledge of the nutritional composition of colored wheat including phytochemicals and bioactive compounds like flavonoids, phenolic compounds, their health benefits, methods and technologies used for processing and extraction as well as the effects of processing on these compounds.
Valentina Stacchiotti, Serge Rezzi, Manfred Eggersdorfer & Francesco Galli
doi : 10.1080/10408398.2020.1793728
Volume 61, Issue 19, Pages 3211-3232
Gut microbiota is a complex ecosystem seen as an extension of human genome. It represents a major metabolic interface of interaction with food components and xenobiotics in the gastrointestinal (GI) environment. In this context, the advent of modern bacterial genome sequencing technology has enabled the identification of dietary nutrients as key determinants of gut microbial ecosystem able to modulate the host-microbiome symbiotic relationship and its effects on human health. This article provides a literature review on functional and molecular interactions between a specific group of lipids and essential nutrients, e.g., fat-soluble vitamins (FSVs), and the gut microbiota. A two-way relationship appears to emerge from the available literature with important effects on human metabolism, nutrition, GI physiology and immune function. First, FSV directly or indirectly modify the microbial composition involving for example immune system-mediated and/or metabolic mechanisms of bacterial growth or inhibition. Second, the gut microbiota influences at different levels the synthesis, metabolism and transport of FSV including their bioactive metabolites that are either introduced with the diet or released in the gut via entero-hepatic circulation. A better understanding of these interactions, and of their impact on intestinal and metabolic homeostasis, will be pivotal to design new and more efficient strategies of disease prevention and therapy, and personalized nutrition.
Maria ?ntoniadou & Theodoros Varzakas
doi : 10.1080/10408398.2020.1793729
Volume 61, Issue 19, Pages 3233-3255
Aging impairs senses, mastication, oral status and function, causing nutritional needs and diet insufficiencies. The present needs of independent older adults suggest that health research and oral health care should shift from reductionist disease management to integral and personal treatment plans, including lifestyle, psychological, nutritional and oral health coaching approaches. Dentists and other medical professionals that work in the field of gerodontology should be educated on the macro and micronutrient needs of the elderly and incorporate certain nutritional plans early in the life of their patients with their approval and cooperation, in order to postpone tooth loss and masticatory impairment. Old recipes such as the Mediterranean diet should be kept as a base for all the elderly and be enriched in a customized interpersonal way from the dentist as well as the medical professional according to the specific needs of one’s oral and general health status. In this nonsystematic review paper, the basic aspects of the vicious cycle of nutrition and oral health status are discussed and suggestions of major nutrients’ influence and needs for independent elders are reported. Based on the scientific data collected, suggestions are made for the food industry for better quality and dosage of foods for this category of individuals. Such strategies can be a whole new area of interest for the food industry in order to obtain better quality of food packaging for the independent OA with accepted texture, odor, colors, macronutrients and micronutrients’ consistency and in specific portions.
Walaa M. S. Gomaa, Xin Feng, Huihua Zhang, Xuewei Zhang, Weixian Zhang, Xiaogang Yan, Quanhui Peng & Peiqiang Yu
doi : 10.1080/10408398.2020.1798343
Volume 61, Issue 19, Pages 3256-3266
This review aims to provide research update and progress on applications of advanced molecular spectroscopy to current research on canola related bio-processing technology, molecular structure, and nutrient utilization and availability. The studies focused on how inherent molecular structure changes affect nutritional quality of canola and its co-products from bio-processing. The molecular spectroscopic techniques (SR-IMS, DRIFT, ATR-FTIR) used for molecular structure and nutrition association were reviewed, including the synchrotron radiation with infrared microspectroscopy, the synchrotron radiation with soft x-ray microspectroscopy, the diffuse reflectance infrared Fourier transform spectroscopy, the grading near infrared reflectance spectroscopy, and the Fourier transform infrared vibrational spectroscopy. Nutritional evaluation with other techniques in association with molecular structure was also reviewed. This study provides updated research progress on application of molecular spectroscopy in combination with various nutrition evaluation techniques to current research in the canola-related bio-oil/bio-energy processing and nutrition sciences.
Alvaro Ferreira-Lazarte, F. Javier Moreno & Mar Villamiel
doi : 10.1080/10408398.2020.1798344
Volume 61, Issue 19, Pages 3267-3278
Oro-gastrointestinal digestion of dietary carbohydrates involves up to six different carbohydrases in a multistage process. Enzymes from the small intestinal brush border membrane play a major role in the digestibility of these substrates. However, to date, the inclusion of these small intestinal enzymes has been dismissed in most in vitro studies carried out, despite their importance in the degradation of carbohydrates. Several in vitro and in vivo studies have demonstrated the capability of brush border enzymes to degrade certain “non-digestible” carbohydrates to a different extent depending on their structural composition (monomeric composition, glycosidic linkage, etc.). In this sense, considering the available evidence, mucosal disaccharidases embedded in the small intestinal brush border membrane vesicles must be considered in addition to ?-amylases; therefore, new approaches for the evaluation of the digestibility of carbohydrates have been recently reported. These new methods based on the utilization of the small intestinal enzymes present in the brush border membrane aim to fulfill the final and key step of the digestion of carbohydrates in the small intestine. Here, rat small intestinal extract enzymes as well as brush border membrane vesicles from pig have emerged as very reliable and useful tools to evaluate carbohydrate digestion. Thus, this review aims to go briefly through the most relevant digestion methods for carbohydrates that are currently available and to highlight the new improved methods, which include mammalian intestinal enzymes, and their current use in the evaluation of the digestibility of prebiotics.
Mohamed Rhouma, Pablo Romero-Barrios, Marie-Lou Gaucher & Sujinder Bhachoo
doi : 10.1080/10408398.2020.1798345
Volume 61, Issue 19, Pages 3279-3296
Antimicrobial resistance has become a global issue and a threat to human and animal health. Contamination of poultry carcasses with meat-borne pathogens represents both an economic and a public health concern. The use of antimicrobial processing aids (APA) during poultry processing has contributed to an improvement in the microbiological quality of poultry carcasses. However, the extensive use of these decontaminants has raised concerns about their possible role in the co-selection of antibiotic-resistant bacteria. This topic is presented in the current review to provide an update on the information related to bacterial adaptation to APA used in poultry processing establishments, and to discuss the relationship between APA bacterial adaptation and the acquisition of a new resistance phenotype to therapeutic antimicrobials by bacteria. Common mechanisms such as active efflux and changes in membrane fluidity are the most documented mechanisms responsible for bacterial cross-resistance to APA and antimicrobials. Although most studies reported a bacterial resistance to antibiotics not reaching a clinical level, the under-exposure of bacteria to APA remains a concern in the poultry industry. Further research is needed to determine if APA used during poultry processing and therapeutic antimicrobials share common sites of action in bacteria and encounter similar mechanisms of resistance.
Yinglai Teng, Scott G. Stewart, Yao-Wen Hai, Xuan Li, Martin G. Banwell & Ping Lan
doi : 10.1080/10408398.2020.1798346
Volume 61, Issue 19, Pages 3297-3317
The notable physical and chemical properties of sucrose fatty acid esters have prompted their use in the chemical industry, especially as surfactants, since 1939. Recently, their now well-recognized value as nutraceuticals and as additives in cosmetics has significantly increased demand for ready access to them. As such a review of current methods for the preparation of sucrose fatty acid esters by both chemical and enzymatic means is warranted and is presented here together with an account of the historical development of these compounds as surfactants (emulsifiers). The somewhat belated recognition of the antimicrobial, anticancer and insecticidal activities of sucrose esters is also discussed along with a commentary on their structure-property profiles.
آیا می خواهید مدیلیب را به صفحه اصلی خود اضافه کنید؟