INTRODUCTION —
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) [1]. Coronaviruses are important human and animal pathogens in neurologic disease [2]. Symptomatic patients with COVID-19 may present with respiratory symptoms, but neurologic complications have been common, occurring in individuals hospitalized with severe infection and those with baseline neurologic conditions, as well as some individuals with milder illness [3-6]. Following the development of widespread immunity due to vaccines against COVID-19, the frequency and severity of neurologic and other complications have dramatically decreased [7,8].
This topic will review the neurologic complications of COVID-19 and the management of patients with neurologic conditions who develop COVID-19. Other aspects of COVID-19 are described separately:
●(See "COVID-19: Epidemiology, virology, and prevention".)
●(See "COVID-19: Clinical features".)
●(See "COVID-19: Diagnosis".)
●(See "COVID-19: Management in hospitalized adults".)
●(See "COVID-19: Management of the intubated adult".)
●(See "COVID-19: Clinical manifestations and diagnosis in children".)
NEUROPATHOGENESIS —
The underlying mechanisms of neurologic complications in patients with COVID-19 are diverse and, in some cases, multifactorial. Acute neurologic complications frequently arise from systemic response to the infection or immune dysfunction [9,10]. Delayed or chronic neurologic complications may be related to a persistent inflammatory response, immune dysfunction, or genetic susceptibilities. Other mechanisms may also contribute.
Distinct but likely overlapping neuropathologic mechanisms include:
●Neurologic injury due to systemic dysfunction – Patients with severe COVID-19 who are hospitalized for respiratory impairment and/or other organ failure may develop encephalopathy or other neurologic symptoms due to hypoxemia. Severe illness may also lead to acute neurologic injury from associated metabolic derangements or medication effects. In a case series of patients who died from severe COVID-19 infection, acute hypoxic-ischemic damage was present in nearly all patients, as well as the presence of hemorrhagic and bland infarcts [10]. Microglial activation with microglial nodules and neuronophagia have been identified at autopsy [10-12]. In other series, neuroimaging findings appeared consistent with a delayed posthypoxic leukoencephalopathy and are similar to those described in patients with acute respiratory distress syndrome (ARDS) unrelated to COVID-19 [13-15].
●Immune dysfunction – A dysregulated immune response to SARS-CoV-2 has been implicated in the genesis of neurologic symptoms [16,17].
•Proinflammatory state – Critically ill patients with COVID-19 can develop signs of severe systemic inflammation consistent with a cytokine release syndrome-like presentation that manifests with persistent fever and laboratory evidence of elevated inflammatory markers (eg, D-dimer, ferritin) and proinflammatory cytokines (eg, peripheral tumor necrosis factor [TNF], TNF-alpha, and interleukin 6 [IL-6]) [18,19]. High levels of circulating proinflammatory cytokines can cause confusion and alteration of consciousness [20,21].
Cytokine release may also lead to brain injury by microglial activation and a systemic inflammatory response. In case series and reports, microglial nodules, neuronophagia, and neuronal expression of elevated cytokines (IL-1 beta and IL-6) were found in brain tissue without evidence of direct viral invasion [10,22,23]. Microglial activation to phagocytose hypoxic neurons has been seen with other viral infections.
A proinflammatory state also may be associated with thrombophilia ("thromboinflammation"), increasing the risk of stroke and other thrombotic events [24]. SARS-CoV-2 utilizes angiotensin-converting enzyme 2 (ACE-2), a membrane-bound protein, as its point of entry into cells. By binding to ACE-2, the SARS-CoV-2 virus may damage vascular endothelial cells by inhibiting mitochondrial function and endothelial nitric oxide synthetase activity, resulting in vascular endothelial damage and cardio- and cerebro-vascular complications [25]. Complement activation may also lead to thrombotic microvascular injury in patients with severe COVID-19 [26]. Certain conditions, such as connective tissue disease, diabetes, atherosclerosis, and hypertension, may make some patients more predisposed to endothelial dysfunction [27]. Endothelial damage can contribute to thromboembolic complications, including stroke, as well as to other vascular complications affecting blood pressure regulation.
A heightened immune system response may also persist after acute infection and contribute to delayed recovery. One study that assessed cerebrospinal fluid (CSF) of participants with persisting cognitive symptoms nine months after COVID-19 infection found patients with persistent cognitive symptoms were likelier to have CSF abnormalities than controls (77 percent [10 of 13] versus none [0 of 4]) [28].
•Autoimmunity – Acute and chronic symptoms have been linked to the presence of autoimmune markers in some studies [29], including autoantibodies against immunomodulatory proteins [30]. COVID-19 has been implicated as a trigger for autoimmune-mediated complications, including Guillain-Barré syndrome (GBS), transverse myelitis, peripheral neuropathy, and autoimmune encephalitis. The timing of symptoms relative to initial symptoms of COVID-19 infection suggests that Guillain-Barré occurs as a parainfectious rather than a postinfectious complication in most patients. In one case, weakness preceded the onset of fever and respiratory symptoms [31]. Other cases report a longer interval between the onset of viral illness and weakness, consistent with its occurrence as a postinfectious complication. (See 'Guillain-Barré syndrome' below and 'Other acute neurologic manifestations' below.)
The binding of SARS-CoV-2 to the ACE-2 receptor on the endothelial cells may also lead to immune-mediated injury with the generation of antibody complexes [12].
●Direct viral invasion of the nervous system – Few early reports provide evidence for direct viral invasion of the nervous system [32-34]. In postmortem case series, SARS-CoV-2 was detected in some brain specimens, but these findings were unrelated to the severity of neuropathologic findings and may represent hematogenous contamination during autopsy [10,32,33]. This suggests that neural injury may be due to a systemic inflammatory response and endothelial dysfunction triggered by the SARS-CoV-2 virus rather than the infection itself [35].
It is uncertain if SARS-CoV-2 directly infects the cerebral vessels. Small autopsy studies have reported potential evidence of direct endothelial invasion by the SARS-CoV-2 virus with a possible associated endotheliitis in the lung, heart, kidney, liver, and small intestine [36,37]. However, this remains controversial, as structures on electron microscopy thought to represent viral particles in the endothelium of blood vessels in the kidney may actually be normal structures or artifacts [38,39]. Neuropathologic studies have not confirmed frank cerebral vasculitis with SARS-CoV-2 [10].
●Neurodegeneration – Neuronal changes in limbic and other brain regions have been reported in patients with a prior COVID-19 infection. Among 785 participants of the United Kingdom Biobank study with baseline and follow-up imaging, structural changes were likelier in those following COVID-19 infection [40]. Repeat imaging was performed at a mean of 141 days following COVID-19 infection. Patients with COVID-19 infection were found to have greater reductions in functional connectivity and structural domains (gray matter thickness in the orbitofrontal and parahippocampal cortices and global brain size) compared with controls. In another study, elevated levels of biomarkers associated with neuronal dysfunction were reported in patients with persistent neurologic symptoms following either severe or mild COVID-19 infection [41]. It is unclear whether these structural changes were due to long-term effects from COVID-19 infection or the functional impact of anosmia on the cortex. The persistence of these findings and their functional significance over the long term is also uncertain.
Neurodegenerative markers can be elevated in some patients with COVID-19 infection. In a study of 251 patients hospitalized with COVID-19 (without pre-existing reported dementia or mild cognitive impairment), those with new neurologic events during hospitalization were likelier to have elevations in neurodegenerative markers (eg, Tau, neurofilament light chain, ubiquitin) [42]. In another study, elevated levels of biomarkers associated with neuronal dysfunction were reported in patients with persistent neurologic symptoms following either severe or mild COVID-19 infection [41]. However, neurodegenerative markers may also be elevated in other infections, and the long-term effects of these findings in patients with COVID-19 infection remains uncertain. Further study is warranted to assess the role of these findings in patients with post-COVID neurologic symptoms.
ACUTE NEUROLOGIC COMPLICATIONS —
Neurologic manifestations can occur in approximately half of hospitalized COVID-19 patients. However, the frequency and severity of neurologic complications of COVID-19 identified at the beginning of the pandemic have decreased due to vaccination, natural immunity, and social distancing strategies, as well as due to the evolving effect of variant forms of SARS-CoV-2 that predominate in the community. Typically, fatigue, myalgias, smell/taste dysfunction, and headache appear to be most common [4].
Smell and taste disorders — Anosmia and dysgeusia have been reported as common early symptoms in patients with COVID-19. In a meta-analysis of 83 studies involving more than 27,000 patients, olfactory dysfunction was reported in 48 percent (95% CI 41.2-54.5) [43]. These symptoms may be an initial manifestation of COVID-19 and can occur in the absence of nasal congestion or discharge; however, these are rarely the only clinical manifestations of COVID-19. (See "COVID-19: Clinical features", section on 'Initial presentation'.)
Transient anosmia may be related to inflammatory changes in the sustentacular cells within the nasal epithelium rather than direct injury to the olfactory neurons [44]. Magnetic resonance imaging (MRI) signal abnormalities in one or both olfactory bulbs have been described in patients with COVID-19, which can resolve on follow-up imaging [45-49]. In one MRI-based study of 20 patients with anosmia, edematous obstruction was identified in the olfactory cleft of the nasal cavities [50]. At one-month follow-up, olfactory function correlated with the improvement of obstruction.
Symptoms are frequently transient and improve or resolve in most cases. In one series, among the 33 percent of affected patients who had recovered olfactory function, the mean symptom duration was eight days [51]. In a survey of nonhospitalized patients with olfactory dysfunction from Italy, 83 percent reported complete recovery at a mean of 37 days after symptom onset [52]. Among 51 patients with anosmia who underwent objective olfactory testing, full recovery at four and eight months was reported in 84 and 96 percent, respectively [53]. In some patients, anosmia and dysgeusia may persist for several months, along with other neurologic or systemic symptoms, after acute COVID-19 infection [54]. Persisting dysgeusia may be due to olfactory dysfunction rather than objective taste dysfunction in some patients [55]. (See 'Persistent neurologic symptoms after SARS-CoV-2 infection' below.)
Taste and olfactory dysfunction can occur with other viral infections and other causes; an approach to evaluation is discussed separately. (See "Taste and olfactory disorders in adults: Evaluation and management".)
Encephalopathy — Encephalopathy is common in critically ill patients with COVID-19 infection. Encephalopathy may be more common in COVID-19 than in other severe respiratory illnesses [56]. In a cohort study of 2088 patients with COVID-19 admitted to an intensive care unit, delirium was common, occurring in 55 percent [57].
Underlying causes and risk factors — Critically ill patients, including those with COVID-19, are subject to at least the same causes of encephalopathy as are other critically ill patients. Common causes of agitated or hypoactive delirium are varied and include toxic metabolic encephalopathy, medication effects, cerebrovascular disease, nonconvulsive seizures, and others as outlined in more detail in the table (table 1). The underlying causes of delirium are discussed in detail separately. (See "Diagnosis of delirium and confusional states".)
Encephalopathy may be a presenting feature of COVID-19 infection, possibly due to inflammatory, endothelial, and/or autoimmune effects on the central and peripheral nervous systems in the brain [58]. It may also be a clinical component of other overlapping neurologic conditions. Other neurologic complications of COVID-19 that may also produce encephalopathy include:
●Ischemic or hemorrhagic stroke.
●Encephalitis.
●Reversible posterior leukoencephalopathy syndrome (RPLS).
●Multisystem inflammatory syndrome.
●Postinfectious demyelinating disease.
●Seizure.
The clinical features of these other neurologic complications are discussed separately. (See 'Cerebrovascular disease' below and 'Other acute neurologic manifestations' below.)
Severe COVID-19 infection and medical comorbidities are common risk factors for encephalopathy. In a study of 509 hospitalized COVID-19 patients, 32 percent had encephalopathy, and those patients were older than those without encephalopathy (66 versus 55 years), had a shorter time from symptom onset to hospitalization (six versus seven days), were more likely to be male, and were more likely to have medical comorbidities (including a history of any neurologic disorder, cancer, cerebrovascular disease, chronic kidney disease, diabetes, dyslipidemia, heart failure, hypertension, or smoking) [3]. Factors associated with a higher risk of delirium among patients with COVID-19 admitted to an intensive care unit included mechanical ventilation, vasopressor use, use of restraints, benzodiazepine or continuous opioid infusions, and lack of family visitation [57].
Clinical features — Patients with COVID-19 may develop prominent delirium and agitation requiring sedation; others manifest encephalopathy with somnolence and a decreased level of consciousness [59,60]. Corticospinal tract signs (eg, hyperreflexia, extensor plantar responses) are common; seizures are described along with encephalopathy in patients with COVID-19, just as they can occur in toxic-metabolic encephalopathy in other settings [61,62]. These signs and symptoms are described separately. (See "Diagnosis of delirium and confusional states", section on 'Clinical presentation'.)
In most cases, encephalopathy develops in patients who become critically ill. In exceptional cases, delirium may be an early, and even a presenting, feature [63,64], especially in older adult patients [65,66]. For patients with mild cognitive impairment or dementia who develop acute delirium, we test for COVID-19 infection, even if the patient does not display respiratory symptoms or fever. Cases of transient global amnesia have also been reported [67,68].
Diagnostic test findings — Patients with acute encephalopathy typically have no evidence of brain inflammation on clinical neuroimaging studies or on cerebrospinal fluid (CSF) analysis, although there are exceptions.
●MRI findings – A spectrum of neuroimaging abnormalities has been described in patients with COVID-19-related encephalopathy; some but not all of these findings indicate a specific, alternative (and/or additional) diagnosis for the patient's mental state, such as stroke, encephalitis, RPLS, and others [13,49,60,69-72]. (See 'Other acute neurologic manifestations' below.)
Approximately half of neuroimaging studies in patients with COVID-19-related encephalopathy demonstrate an acute abnormality, the most common of which are cortical fluid-attenuated inversion recovery (FLAIR) signal abnormality, acute ischemic stroke, leptomeningeal enhancement (often subtle), and other manifestations of encephalitis [13,15,49,60,69,71,73]. Impaired perfusion may be found in hospitalized patients using arterial spin labeling MRI sequences [74].
Hyperintense lesions on MRI have been reported in the splenium of the corpus callosum in adult patients with COVID-19-related encephalopathy [69,71,75,76] as well as in a few children with multisystem inflammatory syndrome in COVID-19 [70]. (See "COVID-19: Multisystem inflammatory syndrome in children (MIS-C) clinical features, evaluation, and diagnosis".)
●Cerebrospinal fluid – Abnormal findings in the CSF are nonspecific and appear in a minority of cases, including patients presenting with acute neurologic symptoms [77]. A 2021 systematic review of individual reports and case series involving 430 patients identified SARS-CoV-2 in the CSF of only 17 patients (6 percent) [77]. Oligoclonal bands were found in three patients among the 132 patients tested.
Evaluation and management — Patients with COVID-19 infection who develop encephalopathy should be evaluated for underlying causes that may occur in patients with other systemic illnesses (table 1). Specific testing depends on the clinical scenario and may include MRI with and without gadolinium, electroencephalography (EEG) to exclude subclinical seizures, and cerebrospinal fluid evaluation to rule out central nervous system infection. The evaluation of patients with encephalopathy is described in detail separately. (See "Diagnosis of delirium and confusional states", section on 'Evaluation'.)
The general management of patients with COVID-19 and encephalopathy is directed toward the underlying cause and is the same as the management of other patients with delirium. (See "Delirium and acute confusional states: Prevention, treatment, and prognosis", section on 'Management' and "Sedative-analgesia in ventilated adults: Management strategies, agent selection, monitoring, and withdrawal".)
Additional factors for patients with COVID-19 infection and encephalopathy include:
●Initial supportive care – As with other critically ill patients, improvement in neurologic dysfunction may be delayed beyond the period when symptoms of the acute illness have resolved. Clinicians should exercise caution about withdrawal of life support measures in patients with encephalopathy in the absence of structural brain injury on neuroimaging or other evidence of futility. Our clinical experience, as well as some published reports, suggest that some patients with a prolonged disorder of consciousness in the setting of severe COVID-19 may awaken up to several days to weeks following cessation of sedating medications and later recover [3,78-80]. In one series of 795 hospitalized patients with severe COVID-19 infection who were intubated for at least seven days, among the nearly 72 percent who eventually recovered consciousness, the median time to recovery of command following was 30 days [81].
●The role of immunomodulatory therapies – The role of glucocorticoids or other immunomodulatory therapies in the management of patients with COVID-19 and encephalopathy is uncertain. Case series have identified a small number of patients with severe encephalopathy who have improved neurologically after receiving glucocorticoids with or without plasma exchange [82,83]. However, glucocorticoids or other immunomodulatory therapies should not be considered routine therapeutic options for patients with COVID-19-related encephalopathy unless additional data emerge to help identify immunotherapy-responsive cases.
The role of glucocorticoids in the general management of severely ill patients with COVID-19 is discussed in further detail separately. (See "COVID-19: Management in hospitalized adults", section on 'Dexamethasone and other glucocorticoids'.)
Cerebrovascular disease
Epidemiology — Cerebrovascular events appear to be relatively infrequent in the setting of acute COVID-19 infection. Incidence rates according to stroke subtype have been assessed in multiple retrospective series:
●Ischemic stroke – 0.4 to 2.4 percent [84-90]
●Intracranial hemorrhage – 0.2 to 0.9 percent [87,88]
●Cerebral venous thrombosis (CVT) – 0.08 percent [91,92]
The risk of stroke varies according to the severity of COVID-19. Early case series suggest that for patients with mild illness, the risk is <1 percent, while for patients in intensive care, the risk may be as high as 6 percent [59].
Most often, stroke occurs one to three weeks after the onset of COVID-19 symptoms, although stroke has been the initial symptom leading to hospitalization in a minority of reported patients [85,86,93-95].
The incidence of stroke may be elevated beyond the acute period of COVID-19 infection. In a study of approximately 5.8 million United States veterans, the incidence of stroke at one year was higher in patients with prior COVID-19 infection than controls (hazard ratio 1.52, 95% CI 1.4-1.6) [96]. Cerebrovascular risk was higher for patients hospitalized with COVID-19 than for patients with less severe symptoms. The etiology of this finding is uncertain and may include a proinflammatory state or endothelial dysfunction following infection or suboptimal follow-up and management of vascular risk factors during the pandemic. (See 'Risk factors and mechanisms' below.)
Risk factors and mechanisms
●Traditional stroke risk factors – Most patients with ischemic stroke associated with COVID-19 are older patients with vascular risk factors [85,87,88,97]. Traditional stroke risk factors such as hypertension, hyperlipidemia, atrial fibrillation, and/or diabetes mellitus have been identified in these patients.
●Hypercoagulability and proinflammatory state associated with infection – Thrombophilia associated with SARS-CoV-2 or the host immune response appears to be an important mechanism of ischemic stroke in some patients with COVID-19 infection, as suggested by elevated markers of hypercoagulability and inflammation [24]. Markedly elevated D-dimer levels commonly found in patients with severe COVID-19 infection also appear to be present specifically in some patients with ischemic stroke [98-100]. D-dimer levels >10,000 ng/mL (>10 mcg/mL fibrinogen equivalent units) have been proposed to identify patients with cryptogenic stroke potentially attributable to COVID-19 hypercoagulability [101]. (See "COVID-19: Hypercoagulability".)
Evidence suggests that serious infections can trigger acute stroke, potentially due to increased inflammation and consequent thrombosis [102-104]. Influenza, sepsis, and minor respiratory and urinary tract infections were associated with increased stroke risk in analyses of administrative datasets [105-107]. In the initial phase of the pandemic, COVID-19 was associated with a higher risk of ischemic stroke than influenza. In a retrospective cohort study comparing patients with emergency department visits or hospitalizations for COVID-19 (n = 1916) or influenza (n = 1486), the incidence of ischemic stroke was higher among patients with COVID-19 (1.6 percent, versus 0.2 percent with influenza; adjusted odds ratio 7.6, 95% CI 2.3-25.2) [86].
●Cardioembolism – Cardiac dysfunction associated with COVID-19 infection may also serve as a potential embolic stroke mechanism, either directly due to SARS-CoV-2 myocarditis or indirectly due to cardiac injury or dysfunction related to general critical illness. COVID-19 has been associated with several cardiac manifestations, including arrhythmia, heart failure, and myocardial infarction, many of which may predispose to cardioembolic stroke. (See "COVID-19: Evaluation and management of cardiac disease in adults".)
●Coagulopathy and anticoagulation – Cases of spontaneous intraparenchymal and cortical subarachnoid hemorrhage have been reported with coagulopathy or anticoagulation [49]. One report of 278 hospitalized patients with COVID-19 and available neuroimaging identified intracerebral hemorrhage in 10 patients. Most of the patients had been treated with full-dose anticoagulation.
Some hemorrhages may represent unrecognized ischemic events with subsequent hemorrhagic conversion. In one report of 3824 hospitalized patients with COVID-19, intracerebral hemorrhage was reported in 33 (0.9 percent) [108]. Based upon the radiologic appearance, the investigators inferred that approximately three-quarters of these may have resulted from hemorrhagic transformation of ischemic stroke.
Intracranial hemorrhage with COVID-19 has also been associated with the use of extracorporeal membrane oxygenation (ECMO) [109-111]. In an international registry, 145 of 2346 (6 percent) patients on ECMO with COVID-19 had an intracranial hemorrhage [110]. Patients on ECMO are also at increased risk of brain ischemia, including due to air embolism. (See "COVID-19: Extracorporeal membrane oxygenation (ECMO)", section on 'Complications'.)
Management — The initial diagnostic approach should be similar to the approach generally used for all patients with suspected stroke aside from necessary precautions related to infection control [112-114]. (See "Initial assessment and management of acute stroke" and "Approach to reperfusion therapy for acute ischemic stroke".)
●Thrombolytic and reperfusion therapies – Evaluation for intravenous thrombolytic therapy and mechanical thrombectomy should be undertaken for patients with acute stroke, with or without COVID-19. Some early observational data suggest there may be an elevated risk of hemorrhage as well as an increased risk of reocclusion after initial recanalization with thrombolysis and thrombectomy among patients with acute COVID-19 infection [115]. (See "Mechanical thrombectomy for acute ischemic stroke" and 'Risk factors and mechanisms' above.)
●Acute antithrombotic therapy – For patients with ischemic stroke and an unambiguous indication for full-dose anticoagulation (eg, atrial fibrillation, severe heart failure), early initiation is reasonable given the high thrombotic risk seen in patients with COVID-19, provided the bleeding risk is tolerable. For other patients with ischemic stroke, early use of aspirin is generally indicated regardless of COVID-19 infection status.
For patients without a defined mechanism for ischemic stroke associated with COVID-19, our approach to testing for a hypercoagulable state is otherwise similar to the approach used for patients without COVID-19. (See "COVID-19: Hypercoagulability", section on 'Routine testing' and "Overview of the evaluation of stroke", section on 'Hypercoagulable studies'.)
Other aspects of the evaluation and management of adults hospitalized with COVID-19 are discussed in detail elsewhere. (See "COVID-19: Management in hospitalized adults".)
Neuromuscular conditions
Guillain-Barré syndrome — Cases of Guillain-Barré syndrome (GBS) have been reported after COVID-19 infection [116-119]. However, a potential causal association of COVID-19 with the risk of GBS remains uncertain [120]. The role of COVID-19 infection as a trigger for GBS is discussed in greater detail separately. (See "Guillain-Barré syndrome in adults: Pathogenesis, clinical features, and diagnosis", section on 'Infection'.)
Most patients with GBS and COVID-19 presented with progressive, ascending limb weakness evolving over one to four days [121]. In a report of 11 patients in the International GBS Outcome Study (IGOS) who developed GBS after COVID-19 infection, sensorimotor features were found in 73 percent, including facial palsy in 64 percent [117]. In other series, the Miller Fisher syndrome [49,122] and other variant forms of GBS [123] have also been described in patients with COVID-19. (See "Guillain-Barré syndrome in adults: Pathogenesis, clinical features, and diagnosis".)
Other acute neuromuscular syndromes
●Myositis – Myalgia and fatigue are common symptoms in COVID-19, however, myositis appears to be uncommon. Three case reports have described rhabdomyolysis with CK >12,000 units/L [124-126]. In one case, muscle biopsy in one patient with COVID-19 and myopathy showed perivascular inflammation and deposition of myxovirus resistance protein A, a type I interferon-inducible protein [126].
●Focal and multifocal neuropathies – Several peripheral nerve and plexus syndromes have been reported in patients with COVID-19. These include:
•Facial nerve palsy [118,127]
•Ocular motor neuropathies [49,128]
•Lower cranial neuropathies (eg, vagus, spinal accessory, hypoglossal, Tapia syndrome) [129,130]
•Multiple cranial neuropathies [122,128]
•Neuralgic amyotrophy [131,132]
•Autonomic neuropathy or dysautonomia [133,134]
●Critical illness neuropathy and myopathy – This complication occurs in patients hospitalized with severe illness, typically those who are mechanically ventilated for several days. Clinical features include flaccid muscle weakness, often with failure to wean from ventilatory support. Critical illness neuropathy and myopathy tends to develop late in the course of COVID-19 infection [135,136]. (See "Neuromuscular weakness related to critical illness".)
●Peripheral nerve injuries after prone positioning – Patients placed in prone positioning for COVID-19-related acute respiratory distress syndrome may develop peripheral nerve, typically brachial plexus, injuries [137-139]. In one study of 83 patients admitted to a rehabilitation facility after severe COVID-19 infection, 12 (15 percent) were diagnosed with a peripheral nerve injury, 11 of whom had been placed in prone positioning [138]. Nerve injuries were most frequently axonal and in the upper limb. (See "Acute respiratory distress syndrome: Prone ventilation in adults", section on 'Complications'.)
Other acute neurologic manifestations — Isolated case series and reports have described several other neurologic syndromes in patients with COVID-19:
●Seizures and status epilepticus – New seizures and status epilepticus can occur in patients with severe COVID-19 infection [140,141]. A meta-analysis of studies that reported seizures among more than 250,000 patients with COVID-19 infection reported a prevalence rate of 1 percent [142]. In one series of 32 patients with COVID-19 who presented to the hospital with seizures, 40 percent had no history of epilepsy or other central nervous system diagnoses [143]. In rare instances, seizures have been the presenting symptom for patients without signs of infection who have tested positive for COVID-19 [143,144]. (See "Seizures and epilepsy in older adults: Etiology, clinical presentation, and diagnosis".)
●Meningoencephalitis – Viral meningoencephalitis has been reported in patients presenting with encephalopathy or seizures and COVID-19. CSF analysis has identified SARS-CoV-2 in some [145,146], but not all [137,147-149], cases. Other cases of brainstem encephalitis or isolated cerebellitis have been reported in adults and children with COVID-19 infection [150-154]. A parainfectious inflammatory cause has been suggested. Some patients with fulminant disease and brainstem compression received external ventricular drainage for hydrocephalus [152].
An autoimmune mechanism has been postulated for some cases. Some patients have clinical syndromes and MRI findings that appear similar to autoimmune encephalitis [155]. One patient was found to have anti-N-methyl-d-aspartate (anti-NMDA) receptor antibodies [149]. Many of these patients appeared to respond to immunomodulatory treatment with glucocorticoids [137,148], plasma exchange [156], and/or intravenous immunoglobulin [149]. (See "Autoimmune (including paraneoplastic) encephalitis: Clinical features and diagnosis".)
●Acute disseminated encephalomyelitis (ADEM) and acute hemorrhagic necrotizing encephalopathy – A few case reports have described patients with clinical and neuroimaging findings consistent with ADEM [20,137,157-159]. Some patients have had myelitis with or without brain involvement [137]. Other patients present with hemorrhagic findings consistent with the hemorrhagic leukoencephalitis variant form of ADEM [72,137,160,161]. (See "Acute disseminated encephalomyelitis (ADEM) in adults".)
●Acute transverse myelitis – Paraparesis or quadriparesis due to acute transverse myelitis is an uncommon complication, typically occurring in symptomatic adults or children days to weeks after the onset of COVID-19 infection [162-164]. Some patients also have clinical features and diagnostic evidence of coexisting ADEM or acute motor neuropathies. (See "Transverse myelitis: Etiology, clinical features, and diagnosis".)
●Multisystem inflammatory syndrome in children – Some children with COVID-19 develop a multisystem inflammatory syndrome (MIS-C), similar to incomplete Kawasaki disease, which can include neurocognitive symptoms (eg, headache, lethargy, confusion). The clinical features of MIS-C are discussed separately. (See "COVID-19: Multisystem inflammatory syndrome in children (MIS-C) clinical features, evaluation, and diagnosis".)
●Generalized myoclonus – Generalized myoclonus may occur as an apparent postinfectious, rare complication of COVID-19. In one report, generalized myoclonus developed in symptomatic patients who were not severely ill at the time [165]. Patients were treated symptomatically with levetiracetam, valproate, clonazepam, and/or propofol sedation and appeared to recover gradually with immunotherapy such as methylprednisolone and/or plasma exchange. (See "Symptomatic (secondary) myoclonus".)
●Reversible posterior leukoencephalopathy syndrome (RPLS) – RPLS has been reported in patients with COVID-19 and may be due to hypertension and kidney failure in some [47,49,88,89,166-170]. In one neuroimaging case series early in the pandemic, findings consistent with RPLS were seen in more than 1 percent of hospitalized patients [49]. (See "Reversible posterior leukoencephalopathy syndrome".)
●Reversible cerebral vasoconstriction syndrome (RCVS) – RCVS has been reported in adults and children with COVID-19 infection [171-173]. Corresponding features on brain imaging of patients with a severe syndrome included subarachnoid hemorrhage, intracerebral hemorrhage, and ischemic stroke. (See "Reversible cerebral vasoconstriction syndrome".)
PERSISTENT NEUROLOGIC SYMPTOMS AFTER SARS-COV-2 INFECTION —
Patients recovering from a severe illness or after hospitalization may report prolonged neurologic symptoms. Likewise, some patients who were hospitalized with COVID-19 report symptoms that persist for weeks to years after the acute infection [174,175].
In addition, patients with milder acute COVID-19 symptoms who never required hospitalization for pneumonia or hypoxemia may also report prolonged neurologic and systemic symptoms [176-178]. Common neurologic symptoms that may interfere with activities of daily life include cognitive impairment, paresthesia, headache, dysgeusia, anosmia, myalgia, dizziness or lightheadedness, blurred vision, and tinnitus. Some symptoms may mimic those of autonomic neuropathy, including fatigue, lightheadedness, anxiety, and nausea [175,176,178-181]. Persistent neurologic symptoms lasting >4 weeks after the initial infection may be part of the "long COVID" syndrome [182], also called "postacute sequelae of SARS-CoV-2 infection (PASC)" [183]. (See "COVID-19: Clinical presentation and diagnosis of adults with persistent symptoms following acute illness ("long COVID")", section on 'Clinical symptoms'.)
Prior COVID-19 infection has also been reported to unmask symptoms of neurodegenerative disease in presymptomatic or mildly symptomatic individuals [184,185].
Neuroimaging with brain MRI is typically normal in patients with persisting neurologic symptoms after COVID-19 infection. However, small studies using functional neuroimaging with fluorodeoxyglucose-positron emission tomography (FDG-PET) have identified multiple areas of glucose hypometabolism in some patients with persisting symptoms, including the orbitofrontal gyrus, hippocampus, amygdala, thalamus, and insular cortex [38,186-189]. It is unclear whether this decrease in glucose utilization is caused by a decrease in brain parenchymal activity, dysregulation of cerebral perfusion, or both.
MANAGEMENT OF PATIENTS WITH NEUROLOGIC CONDITIONS —
Strategies to optimize both prevention and treatment of COVID-19 are important for patients with baseline disabling neurologic conditions due to the associated elevated risk of poor prognosis with COVID-19 infection. Neurologic conditions associated with an elevated risk of complications with COVID-19 infection in cohort studies include:
●Cerebrovascular disease [190,191]
●Epilepsy [192]
●Amyotrophic lateral sclerosis [193]
●Myasthenia gravis [194]
●Multiple sclerosis (MS) [195,196]
●Mild cognitive impairment or dementia [197]
Several conditions have also been identified by the United States Centers for Disease Control and Prevention (CDC) as risk factors for severe infection with SARS-CoV-2 (table 2). These conditions are discussed in greater detail separately. (See "COVID-19: Clinical features", section on 'Risk factors for severe illness'.)
Prevention — Preventive strategies used to help reduce COVID-19 infection and associated complications, including for patients with neurologic conditions, include vaccination, infection control measures, and screening with viral testing. General preventive strategies for all patients are discussed in detail separately. (See "COVID-19: Epidemiology, virology, and prevention", section on 'Prevention'.)
Vaccination against COVID-19 — Based on available data from the general population, we recommend vaccination against COVID-19, in agreement with observational data and guidelines from the American Association of Neuromuscular and Electrodiagnostic Medicine and the National Multiple Sclerosis Society [198-201]. COVID-19 vaccination has been associated with a reduced risk of neurologic complications of COVID-19 infection, including stroke [202]. Vaccination has also been associated with improved symptoms in some patients with postacute persistent COVID-19 symptoms. (See "COVID-19: Clinical presentation and diagnosis of adults with persistent symptoms following acute illness ("long COVID")", section on 'Clinical symptoms' and "COVID-19: Clinical presentation and diagnosis of adults with persistent symptoms following acute illness ("long COVID")", section on 'Impact of reinfection'.)
Immunosuppressive medications may reduce the immunogenicity and effectiveness of vaccination against COVID-19. Patients with neurologic conditions who are receiving immunosuppressive therapy may warrant additional vaccine doses following the primary series. Strategies to optimize the effectiveness of vaccination against COVID-19 infection in patients taking immunosuppressive therapy are discussed separately. (See "COVID-19: Vaccines", section on 'Immunocompromised individuals'.)
Adverse neurologic effects from vaccination against COVID-19 are rare. These include:
●Adverse events associated with vaccines no longer available – Rare events in patients immunized with the adenovirus-vector COVID-19 vaccines have included cases of thrombotic events with thrombocytopenia, including cerebral venous thrombosis (CVT) with and without hemorrhage [203-207] and cases of Guillain-Barré syndrome (GBS) [208-211]. These vaccines have since been discontinued worldwide. These conditions are discussed in greater detail separately. (See "COVID-19: Vaccines", section on 'Events associated with discontinued vaccines'.)
●Other neurologic syndromes – Very rare cases of other neurologic symptoms following COVID-19 vaccination have been reported. These include cognitive impairment, facial palsy, transverse myelitis, and seizures [212-215]. A causal role has not been established.
Clinicians and patients are encouraged to report adverse events to the Vaccine Adverse Event Reporting System.
The benefits of vaccination to prevent the morbidity and mortality associated with COVID-19 infection greatly outweigh the risks [216-219]. (See "COVID-19: Vaccines", section on 'Rare but serious associated events'.)
Among patients with a history of GBS or chronic immune neuropathies, the overall risk of recurrence following COVID-19 vaccination appears low to negligible [220].
Health care utilization — Telemedicine is used to manage outpatients with chronic neurologic disease. Routine outpatient cerebrovascular visits can often be conducted safely and effectively using telehealth [221,222]. In a survey of 143 patients with epilepsy, reduced availability of ambulatory care occurred in approximately one-third of patients and was associated with exacerbation of seizures [223]. (See "Remote wound care", section on 'Modes'.)
Managing immunosuppressive therapy — For most patients with neurologic conditions, chronic immunosuppressive therapy should be continued; generally, immunosuppressive therapy should be discontinued only if severe COVID-19 infection develops [224-228]. The role of switching agents or amending treatment protocols may be appropriate for some patients and is determined by assessing individual risks. Patients with neurologic disease who are treated with immunosuppressive therapy do not appear to be at increased risk of COVID-19 infection.
The management of immunotherapy in patients with neurologic conditions and COVID-19 infection is discussed in detail separately. (See "Overview of disease-modifying therapies for multiple sclerosis", section on 'COVID-19 and DMTs' and "Overview of the treatment of myasthenia gravis", section on 'Managing immunosuppression risks'.)
Other acute treatment issues — Some patients with neurologic conditions who develop a COVID-19 infection are at risk for severe illness, such as those with dementia or neuroinflammatory disorders treated with immunosuppressive medications (table 2). The indications for and approach to COVID-19-specific therapy in symptomatic patients vary by clinical setting and risk profile for severe illness. In addition, COVID-19-specific treatments may help reduce the incidence of neurologic complications in patients with severe symptoms [229]. The approach to COVID-19-specific therapy is discussed separately. (See "COVID-19: Management in hospitalized adults", section on 'COVID-19-specific therapy' and "COVID-19: Evaluation and management of adults with acute infection in the outpatient setting", section on 'Treatment with COVID-19-specific therapies'.)
Other aspects of the evaluation and management of adults hospitalized with COVID-19 include infection control, the prevention of venous thromboembolism, and the management of baseline medications. These issues are discussed in detail elsewhere. (See "COVID-19: Management in hospitalized adults".)
SOCIETY GUIDELINE LINKS —
Links to society and government-sponsored guidelines from selected countries and regions around the world are provided separately. (See "Society guideline links: COVID-19 – Index of guideline topics".)
INFORMATION FOR PATIENTS —
UpToDate offers two types of patient education materials, "The Basics" and "Beyond the Basics." The Basics patient education pieces are written in plain language, at the 5th to 6th grade reading level, and they answer the four or five key questions a patient might have about a given condition. These articles are best for patients who want a general overview and who prefer short, easy-to-read materials. Beyond the Basics patient education pieces are longer, more sophisticated, and more detailed. These articles are written at the 10th to 12th grade reading level and are best for patients who want in-depth information and are comfortable with some medical jargon.
Here are the patient education articles that are relevant to this topic. We encourage you to print or email these topics to your patients. (You can also locate patient education articles on a variety of subjects by searching on "patient info" and the keyword(s) of interest.)
●Basics topics (see "Patient education: COVID-19 overview (The Basics)" and "Patient education: COVID-19 and pregnancy (The Basics)" and "Patient education: COVID-19 and children (The Basics)" and "Patient education: COVID-19 vaccines (The Basics)")
SUMMARY AND RECOMMENDATIONS
●Acute neurologic complications of COVID-19 infection – Neurologic manifestations occur in approximately half of hospitalized COVID-19 patients. Fatigue, myalgias, smell/taste dysfunction, and headache appear to be most common. (See 'Acute neurologic complications' above.)
•Smell and taste disorders – Anosmia and dysgeusia have been reported as common early symptoms in patients with COVID-19. (See 'Smell and taste disorders' above.)
•Encephalopathy – Encephalopathy is common in critically ill patients with COVID-19, occurring in up to 55 percent. Encephalopathy may also be a presenting feature and a clinical component of other overlapping neurologic conditions such as ischemic or hemorrhagic stroke, encephalitis, reversible posterior leukoencephalopathy syndrome (RPLS), multisystem inflammatory syndrome, seizure, or demyelinating diseases. (See 'Encephalopathy' above.)
The evaluation and management of patients with COVID-19 and encephalopathy is directed toward the underlying cause and is the same as with other patients with delirium. Clinicians should exercise caution about withdrawal of life support measures in patients with encephalopathy in the absence of structural brain injury on neuroimaging or other evidence of futility.
•Cerebrovascular disease – Cerebrovascular events appear to be relatively infrequent in the setting of acute COVID-19 infection, occurring in up to 2.4 percent of patients. The risk of stroke is <1 percent for patients with mild illness, while for patients in intensive care, the risk may be as high as 6 percent. Most often, stroke occurs one to three weeks after the onset of COVID-19 symptoms, although stroke has been the initial symptom leading to hospitalization in a minority of reported patients. (See 'Cerebrovascular disease' above.)
Evaluation for intravenous thrombolytic therapy and mechanical thrombectomy should be undertaken for patients with acute stroke, with or without COVID-19.
•Neuromuscular disorders – Rare cases of Guillain-Barré syndrome (GBS) have been reported after COVID-19 infection; however, a potential causal association of COVID-19 with the risk of GBS remains uncertain. Other acute neuromuscular disorders occurring in patients with COVID-19 infection include myositis, focal and multifocal neuropathies, and critical illness neuropathy and myopathy. (See 'Neuromuscular conditions' above.)
•Other acute neurologic manifestations – Isolated case series and reports have described several other neurologic syndromes in patients with COVID-19, including seizures and status epilepticus, encephalitis, acute disseminated encephalomyelitis (ADEM), acute transverse myelitis, multisystem inflammatory syndrome in children (MIS-C), myoclonus, reversible posterior leukoencephalopathy syndrome (RPLS), and reversible cerebral vasoconstriction syndrome (RCVS). (See 'Other acute neurologic manifestations' above.)
●Persistent neurologic symptoms after COVID-19 infection – Some patients who were hospitalized with COVID-19 report symptoms that persist for weeks to years after the acute infection. In addition, patients with milder acute COVID-19 symptoms who never required hospitalization for pneumonia or hypoxemia may also report prolonged neurologic and systemic symptoms. Cognitive impairment, paresthesias, headache, dysgeusia, anosmia, insomnia, and myalgia are common. (See 'Persistent neurologic symptoms after SARS-CoV-2 infection' above.)
●Management of patients with neurologic conditions – Strategies to optimize both prevention and treatment of COVID-19 are important for patients with baseline disabling neurologic conditions due to the associated elevated risk of poor prognosis with COVID-19 infection. (See 'Management of patients with neurologic conditions' above.)
•Vaccination – Patients with neurologic conditions should receive vaccination against COVID-19. COVID-19 vaccination has been associated with a reduced risk of neurologic complications of COVID-19 infection. (See 'Vaccination against COVID-19' above and "COVID-19: Vaccines".)
•Chronic immunosuppressive therapy – For most patients with neurologic conditions, chronic immunosuppressive therapy should be continued. For patients who develop COVID-19 infection, the decision to continue or discontinue immunosuppressive therapy depends on many variables including the specific medication and the severity of the condition for which it is prescribed. (See 'Managing immunosuppressive therapy' above.)
ACKNOWLEDGMENT —
The UpToDate editorial staff acknowledges Mitchell SV Elkind, MD, MS, FAAN, MD, who contributed to earlier versions of this topic review.