ﺑﺎﺯﮔﺸﺖ ﺑﻪ ﺻﻔﺤﻪ ﻗﺒﻠﯽ
خرید پکیج
تعداد آیتم قابل مشاهده باقیمانده : 3 مورد
نسخه الکترونیک
medimedia.ir

MAPK signaling cascade in papillary thyroid carcinoma

MAPK signaling cascade in papillary thyroid carcinoma
Schematic representation of the MAPK signaling cascade in papillary thyroid carcinoma. MAPK, also known as ERK, translocates to the nucleus and promotes cell division when it is phosphorylated by MEK, a serine/threonine kinase. Constitutive activation of this process is tumorigenic. MAPK phosphorylation is a relatively distal step in a sequential phosphorylation cascade that can begin with the activation of a tyrosine kinase, is followed by phosphorylation of RAS which activates BRAF, a serine/threonine kinase followed by MEK and MAPK phosphorylation. In papillary thyroid carcinoma, somatic genetic alterations at three of these steps activate this linear signaling cascade. A gene rearrangement creating a chimeric RET or TRK activates the initial tyrosine kinase step. Activating point mutations of either RAS or BRAF constitutively activates these proteins. The tyrosine kinase, RAS, and BRAF genetic alterations are usually mutually exclusive, suggesting that any single alteration is sufficient to play an early role in tumorigenesis.[1,2]
MAPK: mitogen-activated protein kinase; ERK: extracellular signal-regulated kinase.
References:
  1. Melillo RM, Castillone D, Guarino V, et al. The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J Clin Invest 2005; 115:1068.
  2. Ciampi R, Nikiforov YE. RET/PTC rearrangements and BRAF mutations in thyroid tumorigenesis. Endocrinology 2007; 148:936.
Graphic 71801 Version 4.0

آیا می خواهید مدیلیب را به صفحه اصلی خود اضافه کنید؟