ﺑﺎﺯﮔﺸﺖ ﺑﻪ ﺻﻔﺤﻪ ﻗﺒﻠﯽ
خرید پکیج
تعداد آیتم قابل مشاهده باقیمانده : 3 مورد
نسخه الکترونیک
medimedia.ir

Glipizide and metformin: Drug information

Glipizide and metformin: Drug information
(For additional information see "Glipizide and metformin: Patient drug information")

For abbreviations, symbols, and age group definitions used in Lexicomp (show table)
ALERT: US Boxed Warning
Lactic acidosis:

Postmarketing cases of metformin-associated lactic acidosis have resulted in death, hypothermia, hypotension, and resistant bradyarrhythmias. The onset of metformin-associated lactic acidosis is often subtle, accompanied only by nonspecific symptoms, such as malaise, myalgias, respiratory distress, somnolence, and abdominal pain. Metformin-associated lactic acidosis is characterized by elevated blood lactate levels (>5 mmol/L), anion gap acidosis (without evidence of ketonuria or ketonemia), an increased lactate/pyruvate ratio, and metformin plasma levels generally >5 mcg/mL.

Risk factors for metformin-associated lactic acidosis include renal impairment, concomitant use of certain drugs (eg, cationic drugs such as topiramate), age ≥65 years, having a radiological study with contrast, surgery and other procedures, hypoxic states (eg, congestive heart failure), excessive alcohol intake, and hepatic impairment.

Steps to reduce the risk of and manage metformin-associated lactic acidosis in these high risk groups are provided.

If metformin-associated lactic acidosis is suspected, immediately discontinue glipizide and metformin hydrochloride and institute general supportive measures in a hospital setting. Prompt hemodialysis is recommended.

Pharmacologic Category
  • Antidiabetic Agent, Biguanide;
  • Antidiabetic Agent, Sulfonylurea
Dosing: Adult
Diabetes mellitus, type 2, treatment

Diabetes mellitus, type 2, treatment:

Patients inadequately controlled on diet and exercise alone: Oral: Initial: Glipizide 2.5 mg/metformin 250 mg once daily. In patients with fasting plasma glucose 280 to 320 mg/dL, initiate therapy with glipizide 2.5 mg/metformin 500 mg twice daily. Dose titration: Increase dose every 2 weeks per glycemic response. Maximum dose evaluated in clinical trials: Glipizide 10 mg/metformin 2 g/day in divided doses.

Patients inadequately controlled on a sulfonylurea and/or metformin: Oral: Initial: Glipizide 2.5 mg/metformin 500 mg or glipizide 5 mg/metformin 500 mg twice daily; starting dose should not exceed current daily dose of glipizide (or sulfonylurea equivalent) and/or metformin. Dose titration: Increase dose in increments of no more than glipizide 5 mg/metformin 500 mg/day. Maximum: Glipizide 20 mg/metformin 2 g/day in divided doses.

Dosage adjustment for concomitant therapy: Significant drug interactions exist, requiring dose/frequency adjustment or avoidance. Consult drug interactions database for more information.

Dosing: Kidney Impairment: Adult

The renal dosing recommendations are based upon the best available evidence and clinical expertise. Senior Editorial Team: Bruce Mueller, PharmD, FCCP, FASN, FNKF; Jason Roberts, PhD, BPharm (Hons), B App Sc, FSHP, FISAC; Michael Heung, MD, MS

Altered kidney function:

eGFR ≥60 mL/minute/1.73 m2: No dosage adjustment necessary. Monitor kidney function at least annually.

eGFR >45 to <60 mL/minute/1.73 m2: No dosage adjustment necessary; for the metformin component, a maximum dose of 1.5 g/day in 2 divided doses (eg, 500 mg in the morning, 1 g in the evening) has been suggested (Lalau 2018). Increase monitoring of kidney function (eg, every 6 months) (ADA [Lipska 2011]; Lalau 2018).

eGFR 30 to 45 mL/minute/1.73 m2:

Initiation of therapy: Use of glipizide/metformin is not recommended for initiation of therapy. Refer also to individual agents.

Continuation of existing therapy: If eGFR falls between 30 to <45 mL/minute/1.73 m2 during therapy: Consider benefits/risks of continuing therapy. If continuing therapy, a metformin dosage reduction of 50% (maximum: metformin 1 g/day) with close monitoring of kidney function is recommended (ADA [Lipska 2011]; Lalau 2018).

eGFR <30 mL/minute/1.73 m2: Use is contraindicated.

Acute kidney injury during therapy: If acute kidney injury occurs or if risk factors are present (eg, severe vomiting, diarrhea), instruct patient to temporarily hold the medication due to the metformin component (Diabetes Canada 2018; Wexler 2021).

Dosing: Hepatic Impairment: Adult

The manufacturer recommends avoiding metformin because liver disease is considered a risk factor for the development of lactic acidosis during metformin therapy. However, continued use of metformin in patients with diabetes and chronic liver disease with impaired hepatic function may be associated with a survival benefit in carefully selected patients; use cautiously in patients at risk for lactic acidosis (eg, renal impairment, alcohol use) (Brackett 2010; Crowley 2017; Zhang 2014).

Dosing: Older Adult

Note: Use of sulfonylureas (eg, glipizide) is associated with increased risk of hypoglycemia. The American Diabetes Association suggests using sulfonylureas with caution, and notes preference for glipizide (or glimepiride) due to lower relative risk of hypoglycemia compared to other sulfonylureas (Ref).

Refer to adult dosing. Conservative doses are recommended in patients ≥65 years of age due to potentially decreased renal function; generally, avoid titration to maximum dose.

Adverse Reactions

The following adverse drug reactions and incidences are derived from product labeling unless otherwise specified. Also see individual agents.

>10%:

Endocrine & metabolic: Hypoglycemia (8% to 13%)

Gastrointestinal: Diarrhea (2% to 18%)

Nervous system: Headache (13%)

1% to 10%:

Cardiovascular: Hypertension (3% to 4%)

Gastrointestinal: Abdominal pain (6%), nausea and vomiting (≤8%)

Genitourinary: Urinary tract infection (1%)

Nervous system: Dizziness (2% to 5%)

Neuromuscular & skeletal: Musculoskeletal pain (8%)

Respiratory: Upper respiratory tract infection (8% to 10%)

Postmarketing: Endocrine & metabolic: Lactic acidosis

Contraindications

Hypersensitivity to glipizide, metformin, or any component of the formulation; severe renal impairment (eGFR <30 mL/minute/1.73 m2); acute or chronic metabolic acidosis, including diabetic ketoacidosis, with or without coma

Warnings/Precautions

Concerns related to adverse effects:

• Cardiovascular mortality: Product labeling for sulfonylureas states oral hypoglycemic drugs may be associated with an increased cardiovascular mortality as compared to treatment with diet alone or diet plus insulin. Data to support this association are limited, and several studies, including a large prospective trial (UKPDS 1998), have not supported an association. In patients with established atherosclerotic cardiovascular disease (ASCVD), agents other than sulfonylureas are preferred (ADA 2023).

• Hypoglycemia: All sulfonylurea drugs are capable of producing severe hypoglycemia. Hypoglycemia is more likely to occur when caloric intake is deficient, after severe or prolonged exercise, when ethanol is ingested, or when more than one glucose-lowering drug is used. It is also more likely in patients ≥65 years of age, malnourished or frail patients, and in patients with impaired renal, hepatic, adrenal and/or pituitary function; use with caution (Abbatecola 2012; manufacturer's labeling).

• Lactic acidosis: Lactic acidosis should be suspected in any patient with diabetes receiving metformin with evidence of acidosis but without evidence of ketoacidosis. Discontinue metformin in patients with conditions associated with dehydration, sepsis, or hypoxemia. The risk of accumulation and lactic acidosis increases with the degree of impairment of renal function.

• Sulfonamide (“sulfa”) allergy: The FDA-approved product labeling for many medications containing a sulfonamide chemical group includes a broad contraindication in patients with a prior allergic reaction to sulfonamides. There is a potential for cross-reactivity between members of a specific class (eg, two antibiotic sulfonamides). However, concerns for cross-reactivity have previously extended to all compounds containing the sulfonamide structure (SO2NH2). An expanded understanding of allergic mechanisms indicates cross-reactivity between antibiotic sulfonamides and nonantibiotic sulfonamides may not occur or at the very least this potential is extremely low (Brackett 2004; Johnson 2005; Slatore 2004; Tornero 2004). In particular, mechanisms of cross-reaction due to antibody production (anaphylaxis) are unlikely to occur with nonantibiotic sulfonamides. T-cell-mediated (type IV) reactions (eg, maculopapular rash) are less understood and it is not possible to completely exclude this potential based on current insights. In cases where prior reactions were severe (Stevens-Johnson syndrome/TEN), some clinicians choose to avoid exposure to these classes.

• Vitamin B12 concentrations: Long-term metformin use is associated with vitamin B12 deficiency.

Disease-related concerns:

• Bariatric surgery:

– Altered absorption: Use IR formulations after surgery to minimize the potential effects of bypassing stomach and proximal small bowel with gastric bypass or more rapid gastric emptying and proximal small bowel transit with sleeve gastrectomy (Apovian 2015). After gastric bypass (Roux-en-Y gastric bypass [RYGB]), administration of IR tablets led to increased absorption (AUC0- increased by 21%) and bioavailability (increased by 50%) (Padwal 2011). Compared to control, Tmax in a gastric bypass cohort administered tolbutamide was significantly shorter (1.4 ± 1.8 vs 5.1 ± 1.7 hours; P < 0.001) while Cmax and AUC0- were not altered (Tandra 2013). Lactate levels decrease after gastric bypass (RYGB)-induced weight loss irrespective of the use of metformin. Routinely lowering metformin dose after gastric bypass is not necessary as long as normal renal function is preserved (Deden 2018).

– Hypoglycemia: Use an antidiabetic agent without the potential for hypoglycemia if possible; hypoglycemia may occur after gastric bypass, sleeve gastrectomy, and gastric band (Mechanick 2020). Insulin secretion and sensitivity may be partially or completely restored after these procedures (gastric bypass is most effective, followed by sleeve and finally band) (Korner 2009; Peterli 2012). First-phase insulin secretion and hepatic insulin sensitivity have been shown to be significantly improved in the immediate days after gastric bypass and sleeve gastrectomy. The restorative effects of these procedures on peripheral insulin sensitivity may occur later in the 3- to 12-month period postsurgery (Mingrone 2016).

- Weight gain: Evaluate risk vs benefit and consider alternative therapy after gastric bypass, sleeve gastrectomy, and gastric banding; weight gain may occur (Apovian 2015).

• Glucose-6-phosphate dehydrogenase (G6PD) deficiency: Patients with G6PD deficiency may be at an increased risk of sulfonylurea-induced hemolytic anemia; however, cases have also been described in patients without G6PD deficiency during postmarketing surveillance. Use with caution and consider a nonsulfonylurea alternative in patients with G6PD deficiency.

• Heart failure: Metformin may be used in patients with stable heart failure; use cautiously or avoid use in hypoperfusion (ADA 2023).

• Hepatic impairment: Use metformin cautiously in patients at risk for lactic acidosis (Brackett 2010; Crowley 2017; Zhang 2014).

• Renal impairment: The metabolism and excretion of glipizide may be slowed in patients with renal impairment. Metformin is substantially excreted by the kidney; the risk of metformin accumulation and lactic acidosis increases with degree of renal impairment. Use of concomitant medications that may affect renal function (ie, affect tubular secretion) may also affect metformin disposition. Metformin should be withheld in patients with dehydration and/or prerenal azotemia.

• Stress-related states: It may be necessary to discontinue metformin and administer insulin if the patient is exposed to stress (fever, trauma, infection, surgery).

Special populations:

• Older adult: Use with caution; risk of metformin associated lactic acidosis increases with age.

Other warnings/precautions:

• Appropriate use: Not indicated for use in patients with type 1 diabetes mellitus or with diabetic ketoacidosis.

• Ethanol use: Instruct patients to avoid excessive acute or chronic ethanol use; ethanol may potentiate metformin's effect on lactate metabolism and increase risk of hypoglycemia.

• Iodinated contrast: Administration of iodinated contrast agents has been associated with postcontrast acute kidney injury; in patients taking metformin, acute decreases in renal function have been associated with an increased risk of lactic acidosis due to reduced metformin excretion (ACR 2021; manufacturer's labeling). Refer to Metformin monograph for additional information.

• Surgical procedures: Metformin-containing products should be withheld the day of surgery; restart after renal function is stable (ADA 2023).

Dosage Forms: US

Excipient information presented when available (limited, particularly for generics); consult specific product labeling.

Tablet, Oral:

Generic: Glipizide 2.5 mg and metformin hydrochloride 250 mg, Glipizide 2.5 mg and metformin hydrochloride 500 mg, Glipizide 5 mg and metformin hydrochloride 500 mg

Generic Equivalent Available: US

Yes

Pricing: US

Tablets (glipiZIDE-metFORMIN HCl Oral)

2.5-250 mg (per each): $0.83

2.5-500 mg (per each): $0.99

5-500 mg (per each): $0.99

Disclaimer: A representative AWP (Average Wholesale Price) price or price range is provided as reference price only. A range is provided when more than one manufacturer's AWP price is available and uses the low and high price reported by the manufacturers to determine the range. The pricing data should be used for benchmarking purposes only, and as such should not be used alone to set or adjudicate any prices for reimbursement or purchasing functions or considered to be an exact price for a single product and/or manufacturer. Medi-Span expressly disclaims all warranties of any kind or nature, whether express or implied, and assumes no liability with respect to accuracy of price or price range data published in its solutions. In no event shall Medi-Span be liable for special, indirect, incidental, or consequential damages arising from use of price or price range data. Pricing data is updated monthly.

Administration: Adult

Oral: Administer with a meal in the morning and in the evening (if twice-daily dosing). Patients without oral intake (NPO) or who require decreased caloric intake may need doses held to avoid hypoglycemia.

Use: Labeled Indications

Diabetes mellitus, type 2, treatment: Adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus.

Medication Safety Issues
High alert medication:

The Institute for Safe Medication Practices (ISMP) includes glipizide among its list of drugs that have a heightened risk of causing significant patient harm when used in error.

Older Adult: High-Risk Medication:

Avoid routine use of sulfonylureas (eg, glipizide) due to increased risk of hypoglycemia. If a sulfonylurea is needed, one with a lower relative risk of hypoglycemia (eg, glipizide, glimepiride) is preferred (ADA 2023; Beers Criteria [AGS 2023]).

Metabolism/Transport Effects

Refer to individual components.

Drug Interactions

Note: Interacting drugs may not be individually listed below if they are part of a group interaction (eg, individual drugs within “CYP3A4 Inducers [Strong]” are NOT listed). For a complete list of drug interactions by individual drug name and detailed management recommendations, use the Lexicomp drug interactions program by clicking on the “Launch drug interactions program” link above.

Abemaciclib: May increase the serum concentration of MetFORMIN. Risk C: Monitor therapy

Ajmaline: Sulfonamides may enhance the adverse/toxic effect of Ajmaline. Specifically, the risk for cholestasis may be increased. Risk C: Monitor therapy

Alcohol (Ethyl): May enhance the adverse/toxic effect of MetFORMIN. Specifically, excessive alcohol ingestion (acute or chronic) may potentiate the risk of lactic acidosis. Risk X: Avoid combination

Alpelisib: May decrease the serum concentration of CYP2C9 Substrates (High risk with Inducers). Risk C: Monitor therapy

Alpha-Glucosidase Inhibitors: May enhance the hypoglycemic effect of Sulfonylureas. Management: Consider a decrease in sulfonylurea dose when initiating therapy with an alpha-glucosidase inhibitor and monitor patients for hypoglycemia. Risk D: Consider therapy modification

Alpha-Lipoic Acid: May enhance the hypoglycemic effect of Antidiabetic Agents. Risk C: Monitor therapy

Aminolevulinic Acid (Systemic): Photosensitizing Agents may enhance the photosensitizing effect of Aminolevulinic Acid (Systemic). Risk X: Avoid combination

Aminolevulinic Acid (Topical): Photosensitizing Agents may enhance the photosensitizing effect of Aminolevulinic Acid (Topical). Risk C: Monitor therapy

Amiodarone: May enhance the hypoglycemic effect of Sulfonylureas. Risk C: Monitor therapy

Androgens: May enhance the hypoglycemic effect of Agents with Blood Glucose Lowering Effects. Risk C: Monitor therapy

Antidiabetic Agents: May enhance the hypoglycemic effect of Hypoglycemia-Associated Agents. Risk C: Monitor therapy

Beta-Blockers (Beta1 Selective): May enhance the hypoglycemic effect of Antidiabetic Agents. Risk C: Monitor therapy

Beta-Blockers (Nonselective): May enhance the hypoglycemic effect of Sulfonylureas. Beta-Blockers (Nonselective) may diminish the therapeutic effect of Sulfonylureas. Risk C: Monitor therapy

Beta-Blockers (Nonselective): May enhance the hypoglycemic effect of Antidiabetic Agents. Beta-Blockers (Nonselective) may diminish the therapeutic effect of Antidiabetic Agents. Risk C: Monitor therapy

Bortezomib: May enhance the therapeutic effect of Antidiabetic Agents. Bortezomib may diminish the therapeutic effect of Antidiabetic Agents. Risk C: Monitor therapy

Carbocisteine: Sulfonylureas may enhance the adverse/toxic effect of Carbocisteine. Specifically, sulfonylureas may enhance adverse effects of alcohol that is present in liquid formulations of carbocisteine-containing products. Risk C: Monitor therapy

Carbonic Anhydrase Inhibitors: May enhance the adverse/toxic effect of MetFORMIN. Specifically, the risk of developing lactic acidosis may be increased. Risk C: Monitor therapy

Cephalexin: May increase the serum concentration of MetFORMIN. Risk C: Monitor therapy

Chloramphenicol (Systemic): May increase the serum concentration of Sulfonylureas. Risk C: Monitor therapy

Cimetidine: May increase the serum concentration of MetFORMIN. Management: Consider alternatives to cimetidine in patients receiving metformin due to a potential for increased metformin concentrations and toxicity (including lactic acidosis). Risk D: Consider therapy modification

Clarithromycin: May enhance the hypoglycemic effect of Sulfonylureas. Risk C: Monitor therapy

Colesevelam: May decrease the serum concentration of GlipiZIDE. Management: Administer glipizide at least 4 hours prior to colesevelam. Risk D: Consider therapy modification

CYP2C9 Inducers (Moderate): May decrease the serum concentration of Sulfonylureas. Risk C: Monitor therapy

CYP2C9 Inhibitors (Moderate): May increase the serum concentration of Sulfonylureas. Risk C: Monitor therapy

Dexketoprofen: May enhance the adverse/toxic effect of Sulfonamides. Risk C: Monitor therapy

Dipeptidyl Peptidase-IV Inhibitors: May enhance the hypoglycemic effect of Sulfonylureas. Management: Consider a decrease in sulfonylurea dose when initiating therapy with a dipeptidyl peptidase-IV inhibitor and monitor patients for hypoglycemia. Risk D: Consider therapy modification

Direct Acting Antiviral Agents (HCV): May enhance the hypoglycemic effect of Antidiabetic Agents. Risk C: Monitor therapy

Dofetilide: MetFORMIN may increase the serum concentration of Dofetilide. Risk C: Monitor therapy

Dolutegravir: May increase the serum concentration of MetFORMIN. Management: Consider alternatives to this combination or use of lower metformin doses. Carefully weigh the risk of metformin toxicities (including lactic acidosis) against the benefit of combining dolutegravir with metformin. Risk D: Consider therapy modification

Elexacaftor, Tezacaftor, and Ivacaftor: May increase the serum concentration of GlipiZIDE. Risk C: Monitor therapy

Erdafitinib: May increase the serum concentration of OCT2 Substrates (Clinically Relevant with Inhibitors). Management: Consider alternatives to this combination when possible. If combined, monitor for increased effects/toxicities of OCT2 substrates and consider OCT2 substrate dose reductions when appropriate. Risk D: Consider therapy modification

Etilefrine: May diminish the therapeutic effect of Antidiabetic Agents. Risk C: Monitor therapy

Fexinidazole: May increase the serum concentration of MATE1/2-K Substrates (Clinically Relevant with Inhibitors). Management: Avoid use of fexinidazole with MATE1/2-K substrates when possible. If combined, monitor for increased MATE1/2-K substrate toxicities. Risk D: Consider therapy modification

Fexinidazole: May increase the serum concentration of OCT2 Substrates (Clinically Relevant with Inhibitors). Management: Avoid use of fexinidazole with OCT2 substrates when possible. If combined, monitor for increased OCT2 substrate toxicities. Risk D: Consider therapy modification

Fibric Acid Derivatives: May enhance the hypoglycemic effect of Sulfonylureas. Risk C: Monitor therapy

Fludeoxyglucose F 18: MetFORMIN may diminish the diagnostic effect of Fludeoxyglucose F 18. Management: Consider holding metformin for 48 hours or longer prior to PET scans using fludeoxyglucose F18 (FDG-F18) when imaging of the colon or intestine is required. Consider increased monitoring of blood glucose when metformin is held. Risk D: Consider therapy modification

Foslevodopa: May increase the serum concentration of MATE1/2-K Substrates (Clinically Relevant with Inhibitors). Risk C: Monitor therapy

Gilteritinib: May increase the serum concentration of OCT1 Substrates (Clinically Relevant with Inhibitors). Risk C: Monitor therapy

Glucagon-Like Peptide-1 Agonists: May enhance the hypoglycemic effect of Sulfonylureas. Management: Consider sulfonylurea dose reductions when used in combination with glucagon-like peptide-1 agonists. Risk D: Consider therapy modification

Glycopyrrolate (Systemic): May increase the serum concentration of MetFORMIN. Risk C: Monitor therapy

Guanethidine: May enhance the hypoglycemic effect of Antidiabetic Agents. Risk C: Monitor therapy

Guar Gum (Partially Hydrolyzed): May decrease the serum concentration of MetFORMIN. Risk C: Monitor therapy

Herbal Products with Glucose Lowering Effects: May enhance the hypoglycemic effect of Hypoglycemia-Associated Agents. Risk C: Monitor therapy

Hyperglycemia-Associated Agents: May diminish the therapeutic effect of Antidiabetic Agents. Risk C: Monitor therapy

Hypoglycemia-Associated Agents: May enhance the hypoglycemic effect of other Hypoglycemia-Associated Agents. Risk C: Monitor therapy

Hypoglycemia-Associated Agents: Antidiabetic Agents may enhance the hypoglycemic effect of Hypoglycemia-Associated Agents. Risk C: Monitor therapy

Indobufen: May increase the serum concentration of GlipiZIDE. Risk C: Monitor therapy

Iodinated Contrast Agents: May enhance the adverse/toxic effect of MetFORMIN. Renal dysfunction that may be caused by iodinated contrast agents may lead to metformin-associated lactic acidosis. Management: Management advice varies. Refer to the full drug interaction monograph content for details. Risk D: Consider therapy modification

LamoTRIgine: May increase the serum concentration of MetFORMIN. Management: The lamotrigine Canadian product monograph states that coadministration of these drugs is not recommended. Risk C: Monitor therapy

Lumacaftor and Ivacaftor: May decrease the serum concentration of CYP2C9 Substrates (High Risk with Inhibitors or Inducers). Lumacaftor and Ivacaftor may increase the serum concentration of CYP2C9 Substrates (High Risk with Inhibitors or Inducers). Risk C: Monitor therapy

Maitake: May enhance the hypoglycemic effect of Agents with Blood Glucose Lowering Effects. Risk C: Monitor therapy

MATE1/2-K Inhibitors: May increase the serum concentration of MetFORMIN. Risk C: Monitor therapy

Mecamylamine: Sulfonamides may enhance the adverse/toxic effect of Mecamylamine. Risk X: Avoid combination

Methoxsalen (Systemic): Photosensitizing Agents may enhance the photosensitizing effect of Methoxsalen (Systemic). Risk C: Monitor therapy

Methylol Cephalexin: May increase the serum concentration of MetFORMIN. Risk C: Monitor therapy

Metreleptin: May enhance the hypoglycemic effect of Sulfonylureas. Management: Sulfonylurea dosage adjustments (including potentially large decreases) may be required to minimize the risk for hypoglycemia with concurrent use of metreleptin. Monitor closely for signs or symptoms of hypoglycemia. Risk D: Consider therapy modification

Miconazole (Oral): May enhance the hypoglycemic effect of Sulfonylureas. Miconazole (Oral) may increase the serum concentration of Sulfonylureas. Risk C: Monitor therapy

Mitiglinide: May enhance the adverse/toxic effect of Sulfonylureas. Risk X: Avoid combination

Monoamine Oxidase Inhibitors: May enhance the hypoglycemic effect of Agents with Blood Glucose Lowering Effects. Risk C: Monitor therapy

Nonsteroidal Anti-Inflammatory Agents: May enhance the adverse/toxic effect of MetFORMIN. Risk C: Monitor therapy

Ombitasvir, Paritaprevir, and Ritonavir: May enhance the adverse/toxic effect of MetFORMIN. Specifically, the risk for lactic acidosis may be increased. Risk C: Monitor therapy

Ombitasvir, Paritaprevir, Ritonavir, and Dasabuvir: May enhance the adverse/toxic effect of MetFORMIN. Specifically, the risk for lactic acidosis may be increased. Risk C: Monitor therapy

Ondansetron: May increase the serum concentration of MetFORMIN. Risk C: Monitor therapy

Pacritinib: May increase the serum concentration of OCT1 Substrates (Clinically Relevant with Inhibitors). Risk X: Avoid combination

Patiromer: May decrease the serum concentration of MetFORMIN. Management: Administer metformin at least 3 hours before or 3 hours after patiromer. Risk D: Consider therapy modification

Pegvisomant: May enhance the hypoglycemic effect of Agents with Blood Glucose Lowering Effects. Risk C: Monitor therapy

Porfimer: Photosensitizing Agents may enhance the photosensitizing effect of Porfimer. Risk C: Monitor therapy

Posaconazole: May enhance the hypoglycemic effect of GlipiZIDE. Posaconazole may increase the serum concentration of GlipiZIDE. Risk C: Monitor therapy

Probenecid: May increase the serum concentration of Sulfonylureas. Risk C: Monitor therapy

Prothionamide: May enhance the hypoglycemic effect of Agents with Blood Glucose Lowering Effects. Risk C: Monitor therapy

Quinolones: May enhance the hypoglycemic effect of Agents with Blood Glucose Lowering Effects. Quinolones may diminish the therapeutic effect of Agents with Blood Glucose Lowering Effects. Specifically, if an agent is being used to treat diabetes, loss of blood sugar control may occur with quinolone use. Risk C: Monitor therapy

RaNITIdine (Withdrawn from US Market): May increase the serum concentration of GlipiZIDE. Risk C: Monitor therapy

Ranolazine: May increase the serum concentration of MetFORMIN. Management: Limit the metformin dose to a maximum of 1,700 mg per day when used together with ranolazine 1,000 mg twice daily. Monitor patients for metformin toxicities, including lactic acidosis and carefully weigh the risks and benefits of this combination. Risk D: Consider therapy modification

Rifapentine: May decrease the serum concentration of CYP2C9 Substrates (High risk with Inducers). Risk C: Monitor therapy

Risdiplam: May increase the serum concentration of MATE1/2-K Substrates (Clinically Relevant with Inhibitors). Management: Avoid use of risdiplam with MATE substrates if possible. If the combination cannot be avoided, monitor closely for adverse effects. Consider a reduced dose of the MATE substrate according to that substrate's labeling if appropriate. Risk D: Consider therapy modification

Ritodrine: May diminish the therapeutic effect of Antidiabetic Agents. Risk C: Monitor therapy

Salicylates: May enhance the hypoglycemic effect of Agents with Blood Glucose Lowering Effects. Risk C: Monitor therapy

Selective Serotonin Reuptake Inhibitors: May enhance the hypoglycemic effect of Agents with Blood Glucose Lowering Effects. Risk C: Monitor therapy

Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors: May enhance the hypoglycemic effect of Sulfonylureas. Management: Consider a decrease in sulfonylurea dose when initiating therapy with a sodium-glucose cotransporter 2 (SGLT2) inhibitor and monitor patients for hypoglycemia. Risk D: Consider therapy modification

Sulfonamide Antibiotics: May enhance the hypoglycemic effect of Sulfonylureas. Risk C: Monitor therapy

Tafenoquine: May increase the serum concentration of MATE1/2-K Substrates (Clinically Relevant with Inhibitors). Management: Avoid use of MATE substrates with tafenoquine, and if the combination cannot be avoided, monitor closely for evidence of toxicity of the MATE substrate and consider a reduced dose of the MATE substrate according to that substrate's labeling. Risk D: Consider therapy modification

Tafenoquine: May increase the serum concentration of OCT2 Substrates (Clinically Relevant with Inhibitors). Management: Avoid use of OCT2 substrates with tafenoquine, and if the combination cannot be avoided, monitor closely for evidence of toxicity of the OCT2 substrate and consider a reduced dose of the OCT2 substrate according to that substrate's labeling. Risk D: Consider therapy modification

Tetracyclines: May enhance the hypoglycemic effect of Sulfonylureas. Risk C: Monitor therapy

Tezacaftor and Ivacaftor: May increase the serum concentration of GlipiZIDE. Risk C: Monitor therapy

Thiazide and Thiazide-Like Diuretics: May diminish the therapeutic effect of Antidiabetic Agents. Risk C: Monitor therapy

Thiazolidinediones: May enhance the hypoglycemic effect of Sulfonylureas. Management: Consider sulfonylurea dose adjustments in patients taking thiazolidinediones and monitor for hypoglycemia. Risk D: Consider therapy modification

Topiramate: May enhance the adverse/toxic effect of MetFORMIN. Specifically, the risk for lactic acidosis may be increased. MetFORMIN may increase the serum concentration of Topiramate. Topiramate may increase the serum concentration of MetFORMIN. Risk C: Monitor therapy

Verapamil: May diminish the therapeutic effect of MetFORMIN. Risk C: Monitor therapy

Verteporfin: Photosensitizing Agents may enhance the photosensitizing effect of Verteporfin. Risk C: Monitor therapy

Vitamin K Antagonists (eg, warfarin): MetFORMIN may diminish the anticoagulant effect of Vitamin K Antagonists. Vitamin K Antagonists may enhance the hypoglycemic effect of MetFORMIN. Risk C: Monitor therapy

Voriconazole: May increase the serum concentration of Sulfonylureas. Risk C: Monitor therapy

Food Interactions

See individual agents.

Reproductive Considerations

Metformin may increase ovulation in premenopausal anovulatory patients resulting in unintended pregnancies.

Refer to individual monographs for additional information.

Pregnancy Considerations

Metformin crosses the placenta (ADA 2023).

Refer to individual monographs for information related to the treatment of diabetes mellitus in pregnancy.

Breastfeeding Considerations

Metformin is present in breast milk.

Due to the potential for hypoglycemia in the breastfeeding infant, the manufacturer recommends a decision be made whether to discontinue breastfeeding or to discontinue the drug, taking into account the importance of treatment to the mother. Refer to individual monographs for additional information.

Dietary Considerations

Individualized medical nutrition therapy based on American Diabetes Association recommendations is an integral part of therapy.

Monitoring Parameters

Plasma glucose (individualize frequency based on treatment regimen, hypoglycemia risk, and other patient-specific factors) (ADA 2023). Monitor renal function (eGFR) prior to therapy initiation and at least annually or at least every 3 to 6 months if eGFR is <60 mL/minute/1.73 m2 (KDIGO 2020). Monitor hematologic parameters (eg, hemoglobin/hematocrit, red blood cell indices) annually; folate if megaloblastic anemia is suspected; volume status (eg, BP, hematocrit, electrolytes). Monitor vitamin B12 serum concentrations every 1 to 2 years, particularly in patients who have been treated with metformin for ≥4 years, or in patients with peripheral neuropathy, anemia, or risk factors for vitamin B12 deficiency (eg, malabsorption syndromes, reduced dietary intake) (ADA 2023; KDIGO 2020; manufacturer's labeling).

HbA1c: Monitor at least twice yearly in patients who have stable glycemic control and are meeting treatment goals; monitor quarterly in patients in whom treatment goals have not been met, or with therapy change. Note: In patients prone to glycemic variability (eg, patients with insulin deficiency), or in patients whose HbA1c is discordant with serum glucose levels or symptoms, consider evaluating HbA1c in combination with blood glucose levels and/or a glucose management indicator (ADA 2023; KDIGO 2020).

Reference Range

Recommendations for glycemic control in patients with diabetes:

Nonpregnant adults (AACE [Samson 2023], ADA 2023):

HbA1c: <7% (a more aggressive [<6.5%] or less aggressive [<8%] HbA1c goal may be targeted based on patient-specific characteristics). Note : In patients using a continuous glucose monitoring system, a goal of time in range >70% with time below range <4% is recommended and is similar to a goal HbA1c <7%.

Preprandial capillary blood glucose: 80 to 130 mg/dL (SI: 4.4 to 7.2 mmol/L) (more or less stringent goals may be appropriate based on patient-specific characteristics).

Peak postprandial capillary blood glucose (~1 to 2 hours after a meal): <180 mg/dL (SI: <10 mmol/L) (more or less stringent goals may be appropriate based on patient-specific characteristics).

Older adults (≥65 years of age) (ADA 2023):

Note: Consider less strict targets in patients who are using insulin and/or insulin secretagogues (eg, sulfonylureas, meglitinides) (ES [LeRoith 2019]).

HbA1c: <7% to 7.5% (healthy); <8% (complex/intermediate health). Note: individualization may be appropriate based on patient and caregiver preferences and/or presence of cognitive impairment. In patients with very complex or poor health (ie, limited remaining life expectancy), consider making therapy decisions based on avoidance of hypoglycemia and symptomatic hyperglycemia rather than HbA1c level.

Preprandial capillary blood glucose: 80 to 130 mg/dL (SI: 4.4 to 7.2 mmol/L) (healthy); 90 to 150 mg/dL (SI: 5 to 8.3 mmol/L) (complex/intermediate health); 100 to 180 mg/dL (SI: 5.6 to 10 mmol/L) (very complex/poor health).

Bedtime capillary blood glucose: 80 to 180 mg/dL (SI: 4.4 to 10 mmol/L) (healthy); 100 to 180 mg/dL (SI: 5.6 to 10 mmol/L) (complex/intermediate health); 110 to 200 mg/dL (SI: 6.1 to 11.1 mmol/L) (very complex/poor health).

Classification of hypoglycemia (ADA 2023):

Level 1: 54 to 70 mg/dL (SI: 3 to 3.9 mmol/L); hypoglycemia alert value; initiate fast-acting carbohydrate (eg, glucose) treatment.

Level 2: <54 mg/dL (SI: <3 mmol/L); threshold for neuroglycopenic symptoms; requires immediate action.

Level 3: Hypoglycemia associated with a severe event characterized by altered mental and/or physical status requiring assistance.

Mechanism of Action

The combination of glipizide and metformin is used to improve glycemic control in patients with type 2 diabetes mellitus by using 2 different, but complementary, mechanisms of action:

Glipizide: Stimulates insulin release from the pancreatic beta cells; reduces glucose output from the liver; insulin sensitivity is increased at peripheral target sites.

Metformin: Decreases hepatic glucose production, decreasing intestinal absorption of glucose and improves insulin sensitivity (increases peripheral glucose uptake and utilization).

Pharmacokinetics (Adult Data Unless Noted)

See individual agents.

Brand Names: International
International Brand Names by Country
For country code abbreviations (show table)

  • (BD) Bangladesh: Glymin plus | Metglip;
  • (CN) China: Metformin hydrochloride and glipizide | Metformin hydrochloride and glipizide tablets (ii);
  • (EG) Egypt: Engilor | Gliform;
  • (IN) India: Bimode-m | Bionase mf | Diacon-m | Diaglip-m | Dibimet plus | Dibizide-m | Glibetic-mf | Glicept | Gliformin | Glimet | Glimet ds | Glipicon m | Glipimet | Glipin-mf | Glitag m | Glucotrol-mf | Glumin | Glynase mf | Glyson-mf | Gpzide m | Libiz m | Lipi-m | Metaglez | Zidmin;
  • (MX) Mexico: Metdual;
  • (PH) Philippines: Dibizide-m;
  • (PK) Pakistan: Minidiab af;
  • (PR) Puerto Rico: Glipizide and metformin hcl | Glipizide and metformin hydrochloride | Glipizide/Metformin | Metaglip;
  • (UA) Ukraine: Dibizide-m
  1. 2023 American Geriatrics Society Beers Criteria Update Expert Panel. American Geriatrics Society 2023 updated AGS Beers Criteria for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2023;71(7):2052-2081. doi:10.1111/jgs.18372 [PubMed 37139824]
  2. Abbatecola AM, Olivieri F, Corsonello A, Strollo F, Fumagalli A, Lattanzio F. Frailty and safety: the example of diabetes. Drug Saf. 2012;35(suppl 1):63-71. doi:10.1007/BF03319104 [PubMed 23446787]
  3. American College of Radiology Committee on Drugs and Contrast Media. ACR Manual on Contrast Media. https://www.acr.org/-/media/ACR/Files/Clinical-Resources/Contrast_Media.pdf. Updated January 2021. Accessed July 13, 2021.
  4. American Diabetes Association (ADA). Standards of care in diabetes–2023. Diabetes Care. 2023;46(suppl 1):S1-S291. https://diabetesjournals.org/care/issue/46/Supplement_1. Accessed May 31, 2023.
  5. American Diabetes Association (ADA). Standards of medical care in diabetes–2022. Diabetes Care. 2022;45(suppl 1):S1-S258. https://diabetesjournals.org/care/issue/45/Supplement_1. Accessed October 13, 2022.
  6. American Diabetes Association (ADA). Standards of medical care in diabetes–2021. Diabetes Care. 2021;44(suppl 1):S1-S212. https://care.diabetesjournals.org/content/44/Supplement_1. Accessed January 13, 2021.
  7. Apovian CM, Aronne LJ, Bessesen DH, et al; Endocrine Society. Pharmacological management of obesity: an Endocrine Society clinical practice guideline [published correction appears in J Clin Endocrinol Metab. 2015;100(5):2135-2136]. J Clin Endocrinol Metab. 2015;100(2):342-362. doi: 10.1210/jc.2014-3415. [PubMed 25590212]
  8. Brackett CC. Clarifying metformin’s role and risks in liver dysfunction. J Am Pharm Assoc (2003). 2010;50(3):407-410. [PubMed 20452916]
  9. Brackett CC, Singh H, Block JH. Likelihood and mechanisms of cross-allergenicity between sulfonamide antibiotics and other drugs containing a sulfonamide functional group. Pharmacotherapy. 2004;24(7):856-870. [PubMed 15303450]
  10. Briggs GG, Ambrose PJ, Nageotte MP, Padilla G, Wan S. Excretion of metformin into breast milk and the effect on nursing infants. Obstet Gynecol. 2005;105(6):1437-1441. [PubMed 15932841]
  11. Crowley MJ, Diamantidis CJ, McDuffie JR, et al. Clinical outcomes of metformin use in populations with chronic kidney disease, congestive heart failure, or chronic liver disease: a systematic review. Ann Intern Med. 2017;166(3):191-200. doi: 10.7326/M16-1901. [PubMed 28055049]
  12. Deden LN, Aarts EO, Aelfers SCW, et al. Risk of metformin-associated lactic acidosis (MALA) in patients after gastric bypass surgery. Obes Surg. 2018;28(4):1080-1085. doi: 10.1007/s11695-017-2974-1. [PubMed 29058235]
  13. Diabetes Canada Clinical Practice Guidelines Expert Committee. Diabetes Canada 2018 clinical practice guidelines for the prevention and management of diabetes in Canada. Can J Diabetes. 2018;42(suppl 1):S1-S325. http://guidelines.diabetes.ca/docs/CPG-2018-full-EN.pdf.
  14. Eyal S, Easterling TR, Carr D, et al. Pharmacokinetics of metformin during pregnancy. Drug Metab Dispos. 2010;38(5):833-840. [PubMed 20118196]
  15. Feig DS, Briggs GG, Kraemer JM, et al. Transfer of glyburide and glipizide into breast milk. Diabetes Care. 2005;28(8):1851-1855. [PubMed 16043722]
  16. Gardiner SJ, Kirkpatrick CM, Begg EJ, Zhang M, Moore MP, Saville DJ. Transfer of metformin into human milk. Clin Pharmacol Ther. 2003;73(1):71-77. [PubMed 12545145]
  17. Glipizide and Metformin [prescribing information]. Pennington, NJ: Zydus Pharmaceuticals USA; November 2016.
  18. Glucotrol (glipizide) [prescribing information]. New York, NY: Pfizer; October 2013.
  19. Hale TW, Kristensen JH, Hackett LP, Kohan R, Ilett KF. Transfer of metformin into human milk. Diabetologia. 2002;45(11):1509-1514 [PubMed 12436333]
  20. Inzucchi SE, Lipska KJ, Mayo H, et al. Metformin in patients with type 2 diabetes and kidney disease: a systematic review. JAMA. 2014;312(24):2668-2675. doi: 10.1001/jama.2014.15298. [PubMed 25536258]
  21. Johnson KK, Green DL, Rife JP, Limon L. Sulfonamide cross-reactivity: fact or fiction? [published correction appears in Ann Pharmacother. 2005;39(7-8):1373]. Ann Pharmacother. 2005;39(2):290-301. [PubMed 15644481]
  22. Kidney Disease: Improving Global Outcomes (KDIGO) diabetes work group. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2020;98(4S):S1-S115. doi:10.1016/j.kint.2020.06.019 [PubMed 32998798]
  23. Korner J, Inabnet W, Febres G, et al. Prospective study of gut hormone and metabolic changes after adjustable gastric banding and Roux-en-Y gastric bypass. Int J Obes (Lond). 2009;33(7):786-795. doi: 10.1038/ijo.2009.79. [PubMed 19417773]
  24. Lalau JD, Kajbaf F, Bennis Y, Hurtel-Lemaire AS, Belpaire F, De Broe ME. Metformin treatment in patients with type 2 diabetes and chronic kidney disease stages 3A, 3B, or 4. Diabetes Care. 2018;41(3):547-553. doi:10.2337/dc17-2231 [PubMed 29305402]
  25. LeRoith D, Biessels GJ, Braithwaite SS, et al. Treatment of diabetes in older adults: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2019;104(5):1520-1574. doi: 10.1210/jc.2019-00198. [PubMed 30903688]
  26. Lipska KJ, Bailey CJ, Inzucchi SE. Use of metformin in the setting of mild-to-moderate renal insufficiency. Diabetes Care. 2011;34(6):1431-1437. doi:10.2337/dc10-2361 [PubMed 21617112]
  27. Mechanick JI, Apovian C, Brethauer S, et al. Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures - 2019 update: cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, the Obesity Society, American Society for Metabolic & Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists. Surg Obes Relat Dis. 2020;16(2):175-247. doi:10.1016/j.soard.2019.10.025 [PubMed 31917200]
  28. Melissas J, Leventi A, Klinaki I, et al. Alterations of global gastrointestinal motility after sleeve gastrectomy: a prospective study. Ann Surg. 2013;258(6):976-982. doi: 10.1097/SLA.0b013e3182774522. [PubMed 23160151]
  29. Mingrone G, Cummings DE. Changes of insulin sensitivity and secretion after bariatric/metabolic surgery. Surg Obes Relat Dis. 2016;12(6):1199-1205. doi: 10.1016/j.soard.2016.05.013. [PubMed 27568471]
  30. Peterli R, Steinert RE, Woelnerhanssen B, et al. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes Surg. 2012;22(5):740-748. doi: 10.1007/s11695-012-0622-3. [PubMed 22354457]
  31. Samson SL, Vellanki P, Blonde L, et al. American Association of Clinical Endocrinology consensus statement: comprehensive type 2 diabetes management algorithm – 2023 update. Endocr Pract. 2023;29(5):305-340. doi:10.1016/j.eprac.2023.02.001 [PubMed 37150579]
  32. Slatore CG, Tilles SA. Sulfonamide hypersensitivity. Immunol Allergy Clin North Am. 2004;24(3):477-490. [PubMed 15242722]
  33. Tandra S, Chalasani N, Jones DR, Mattar S, Hall SD, Vuppalanchi R. Pharmacokinetic and pharmacodynamic alterations in the Roux-en-Y gastric bypass recipients. Ann Surg. 2013;258(2):262-269. doi: 10.1097/SLA.0b013e31827a0e82. [PubMed 23222033]
  34. Tornero P, De Barrio M, Baeza ML, Herrero T. Cross-reactivity among p-amino group compounds in sulfonamide fixed drug eruption: diagnostic value of patch testing. Contact Dermatitis. 2004;51(2):57-62. [PubMed 15373844]
  35. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) [published correction appears in Lancet. 1999;354(9178):602]. UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837-853. [PubMed 9742976]
  36. Wexler DJ. Metformin in the treatment of adults with type 2 diabetes mellitus. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. http://www.uptodate.com. Accessed October 25, 2021.
  37. Zhang X, Harmsen WS, Mettler TA, et al. Continuation of metformin use after a diagnosis of cirrhosis significantly improves survival of patients with diabetes. Hepatology. 2014;60(6):2008-2016. [PubMed 24798175]
Topic 8791 Version 273.0

آیا می خواهید مدیلیب را به صفحه اصلی خود اضافه کنید؟