Antidepressants increased the risk compared with placebo of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults in short-term studies of major depressive disorder (MDD) and other psychiatric disorders. Anyone considering the use of nortriptyline or any other antidepressant in a child, adolescent, or young adult must balance this risk with the clinical need. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared with placebo in adults older than 24 years; there was a reduction in risk with antidepressants compared with placebo in adults 65 years and older. Depression and certain other psychiatric disorders are themselves associated with increases in the risk of suicide. Appropriately monitor patients of all ages who are started on antidepressant therapy and observe them closely for clinical worsening, suicidality, or unusual changes in behavior. Advise families and caregivers of the need for close observation and communication with the health care provider. Nortriptyline is not approved for use in pediatric patients.
Note: In patients sensitive to adverse effects, some experts suggest lower starting doses of 10 mg daily and gradual titration (eg, at intervals ≥1 week) unless otherwise specified (Ref).
Cyclic vomiting syndrome, moderate to severe, prevention (alternative agent) (off-label use):
Note: May be used as an alternative to amitriptyline to minimize adverse effects. Use and dosing established with amitriptyline; nortriptyline doses are equivalent (Ref).
Oral: Initial: 10 to 25 mg once daily at bedtime; may increase dose based on response and tolerability in increments of 10 to 25 mg at weekly intervals up to 100 mg/day (Ref). Typically requires a trial of 1 to 2 months at a therapeutic dose to adequately assess efficacy (Ref).
Functional dyspepsia (alternative agent) (off-label use):
Note: May be used to augment or replace proton pump inhibitor therapy in partial and nonresponders who have been tested for H. pylori and treated if positive (Ref). Use and dosing established with amitriptyline; nortriptyline doses are equivalent (Ref).
Oral: Initial: 10 to 25 mg once daily at bedtime; may increase dose based on response and tolerability in increments of 10 to 25 mg at ≥1-week intervals, up to a maximum of 50 mg/day (Ref). Some experts suggest a lower maintenance dose range of 20 to 30 mg/day. Typically requires a trial of 8 to 12 weeks at a therapeutic dose to adequately assess efficacy. If effective, reassess at 6 months and consider tapering; may resume if dyspepsia recurs (Ref).
Headache, chronic tension type, prevention (off-label use):
Note: Use and dosing established with amitriptyline; nortriptyline doses are equivalent (Ref).
Oral: Initial: 10 to 25 mg once daily at bedtime; may increase dose based on response and tolerability in 10 to 25 mg increments at intervals ≥1 week, up to a maximum of 125 mg/day (Ref). May require up to 12 weeks of treatment at a therapeutic dose to adequately assess efficacy. Once effective, continue for at least 3 to 6 months before attempting gradual tapering (Ref)
Irritable bowel syndrome–associated pain and global symptoms (off-label use):
Note: Due to their effect on intestinal transit, tricyclic antidepressants should be used cautiously in patients with constipation (Ref).
Oral: Initial: 10 to 25 mg once daily at bedtime; may gradually increase dose based on response and tolerability to a recommended dose of 25 to 75 mg/day (Ref). Some experts recommend 3 to 4 weeks of therapy before increasing the dose (Ref).
Major depressive disorder (unipolar) (alternative agent): Oral: Initial: 25 to 50 mg once daily at bedtime; increase dose based on response and tolerability in 25 to 50 mg increments at intervals ≥1 week up to a usual dose of 50 to 150 mg/day (Ref). To improve tolerability, some experts suggest an initial dose of 25 mg/day at bedtime for most patients; a higher starting dose of 50 mg/day and more rapid titration (eg, every few days) may be considered in closely supervised (eg, hospitalized) settings (Ref). Maximum: 150 mg/day (Ref); however, some patients tolerate and benefit from doses up to 200 mg/day (Ref).
Migraine, prevention (alternative agent) (off-label use):
Note: An adequate trial for assessment of effect is considered to be at least 2 to 3 months at a therapeutic dose (Ref).
Oral: Initial: 10 to 25 mg once daily at bedtime; increase dose based on response and tolerability in 10 mg increments at intervals of 1 to 2 weeks, up to 100 mg/day (Ref).
Myofascial pain syndrome and related causes of chronic pain including myofascial pelvic pain, nonradicular neck pain, temporomandibular disorders, and vulvodynia (alternative agent) (off-label use):
Note: May consider for patients with persistent symptoms despite multimodal care and treatment with first-line agents (Ref).
Oral: Initial: 10 to 25 mg once daily at bedtime; may increase based on response and tolerability in 10 to 25 mg increments every 1 to 2 weeks to a usual dosage range of 25 to 75 mg/day (Ref). Maximum: 150 mg/day (Ref). Due to tolerability concerns, some experts avoid or use caution with doses >50 mg/day (Ref). May require 6 to 12 weeks of therapy (including 2 weeks at maximum tolerated dose) to adequately assess efficacy (Ref).
Neuropathic pain, chronic, including diabetic neuropathy (off-label use): Oral: Initial: 10 to 25 mg once daily at bedtime; may increase dose based on response and tolerability in 10 to 25 mg increments at intervals ≥1 week, up to a usual dosage range of 25 to 100 mg once daily at bedtime or in 2 divided doses. Maximum dose: 150 mg/day given once daily at bedtime or in 2 divided doses (Ref). In patients with diabetic neuropathy, some experts recommend a maximum dose of 100 mg/day (Ref). May require 6 to 12 weeks of therapy (including 2 weeks at maximum tolerated dose) to adequately assess efficacy (Ref).
Postherpetic neuralgia (alternative agent) (off-label use):
Note: May consider for patients who do not tolerate or respond to a gabapentinoid (Ref).
Oral: Initial: 10 to 20 mg once daily at bedtime; may increase daily dose based on response and tolerability in 10 to 20 mg increments at intervals of ≥3 days (typically weekly) to a maximum dose of 150 mg/day (Ref). May require 6 to 12 weeks of therapy (including 2 weeks at maximum tolerated dose) to adequately assess efficacy (Ref).
Smoking cessation (alternative agent) (off-label use):
Note: May consider, in conjunction with behavioral support, for patients who do not tolerate first-line agents or who require an adjunct to first-line therapies (Ref). Initiate ≥2 weeks before planned quit date (Ref).
Initial:
Days 1 to 3: Oral: 25 mg once daily at bedtime (Ref).
Days 4 to 7: Oral: 50 mg once daily at bedtime (Ref).
Maintenance (day 8 and later): Oral: 75 mg once daily at bedtime (Ref). Some patients may experience improved tolerability by administering in 2 or 3 divided doses. Further titration up to 125 mg/day may be needed to adequately decrease cravings in some patients (Ref).
Duration: Continue for a total of at least 12 weeks of treatment (Ref). May consider extended maintenance therapy (eg, up to 1 year) based on individualized risk-benefit assessment (Ref).
Discontinuation of therapy: When discontinuing antidepressant treatment that has lasted for ≥4 weeks, gradually taper the dose (eg, over 2 to 4 weeks) to minimize withdrawal symptoms and detect reemerging symptoms (Ref). For brief treatment (eg, 2 to 3 weeks) may taper over 1 to 2 weeks; <2 weeks treatment generally does not warrant tapering (Ref). Reasons for a slower taper (eg, over ≥4 weeks) include a history of antidepressant withdrawal symptoms or high doses of antidepressants (Ref). If intolerable withdrawal symptoms occur, resume the previously prescribed dose and/or decrease dose at a more gradual rate (Ref). Select patients (eg, those with a history of discontinuation syndrome) on long-term treatment (>6 months) may benefit from tapering over >3 months (Ref). Evidence supporting ideal taper rates is limited (Ref).
Switching antidepressants: Evidence for ideal antidepressant switching strategies is limited; strategies include cross-titration (gradually discontinuing the first antidepressant while at the same time gradually increasing the new antidepressant) and direct switch (abruptly discontinuing the first antidepressant and then starting the new antidepressant at an equivalent dose or lower dose and increasing it gradually). Cross-titration (eg, over 1 to 4 weeks depending upon sensitivity to discontinuation symptoms and adverse effects) is standard for most switches but is contraindicated when switching to or from a monoamine oxidase inhibitor (MAOI). A direct switch may be an appropriate approach when switching to another agent in the same or similar class (eg, when switching between 2 selective serotonin reuptake inhibitors), when the antidepressant to be discontinued has been used for <1 week, or when the discontinuation is for adverse effects. When choosing the switch strategy, consider the risk of discontinuation symptoms, potential for drug interactions, other antidepressant properties (eg, half-life, adverse effects, pharmacodynamics), and the degree of symptom control desired (Ref).
Switching to or from an MAOI:
Allow 14 days to elapse between discontinuing an MAOI and initiation of nortriptyline.
Allow 14 days to elapse between discontinuing nortriptyline and initiation of an MAOI.
Dosage adjustment for concomitant therapy: Significant drug interactions exist, requiring dose/frequency adjustment or avoidance. Consult drug interactions database for more information.
The renal dosing recommendations are based upon the best available evidence and clinical expertise. Senior Editorial Team: Bruce Mueller, PharmD, FCCP, FASN, FNKF; Jason A. Roberts, PhD, BPharm (Hons), B App Sc, FSHP, FISAC; Michael Heung, MD, MS.
Altered kidney function: No dosage adjustment necessary for any degree of kidney dysfunction (Ref); however, interindividual variability in clearance and half-life is high (Ref); use with caution.
Hemodialysis, intermittent (thrice weekly): Not dialyzed: No supplemental dose or dosage adjustment necessary (Ref); however, dialysis patients have demonstrated increased sensitivity to the anticholinergic effects of tricyclic antidepressants (TCAs). Use with caution along with close monitoring for both anticholinergic and QT-prolonging effects (Ref).
Peritoneal dialysis: Unlikely to be dialyzed (large Vd): No dosage adjustment necessary (expert opinion); however, dialysis patients have demonstrated increased sensitivity to the anticholinergic effects of TCAs. Use with caution along with close monitoring for both anticholinergic and QT-prolonging effects (Ref).
CRRT: Unlikely to be dialyzed: No dosage adjustment necessary (Ref).
PIRRT (eg, sustained, low-efficiency diafiltration): Unlikely to be dialyzed: No dosage adjustment necessary (Ref).
There are no dosage adjustments provided in the manufacturer’s labeling. Nortriptyline is metabolized hepatically; use with caution. Some experts recommended reducing initial and maintenance doses by 50% in patients with hepatic impairment, with cautious dose adjustments based on response and tolerability (Ref).
Note: Avoid use (Ref).
Depression: Oral: Initial: 10 to 25 mg/day given once daily or in divided doses; may increase dose based on response and tolerability in 10 to 50 mg increments at intervals of ≥1 week up to a maximum of 150 mg/day given once daily or in divided doses (Ref). Some patients tolerate and benefit from doses up to 200 mg/day (Ref).
Discontinuation of therapy: Refer to adult dosing.
Switching antidepressants: Refer to adult dosing.
(For additional information see "Nortriptyline: Pediatric drug information")
Attention-deficit/hyperactivity disorder (ADHD): Limited data available: Note: Nortriptyline is not suggested as a therapeutic option for routine management of ADHD (Ref); however, may be considered after unsuccessful trials with other agents and comorbid conditions that may improve with nortriptyline (Ref).
Children ≥6 years and Adolescents: Oral: Initial: 0.5 mg/kg/day; may increase by 0.5 mg/kg/day increments at weekly intervals; maximum daily dose: 2 mg/kg/day up to 100 mg/day (Ref); in one trial, the daily dose was divided twice daily with a dose administered before school and a dose after dinner; reported mean effective dose: 1.8 mg/kg/day (Ref).
Major depressive disorder, unipolar: Note: Controlled clinical trials have not shown tricyclic antidepressants to be superior to placebo for the treatment of depression in children and adolescents. Although FDA approved in adolescents, a selective serotonin reuptake inhibitor (SSRI) is recommended first line for treatment of depression in children and adolescents with/without psychotherapeutic interventions; nortriptyline may be beneficial for patients with comorbid conditions or for those in whom first- and second-line treatment options have failed (Ref).
Adolescents: 30 to 50 mg/day in 3 to 4 divided doses or as a single daily dose; maximum daily dose: 150 mg/day.
Neuropathic pain: Limited data available: Children and Adolescents: Oral: Initial: 0.2 mg/kg/dose at bedtime for 4 doses (days 1 to 4) then increase to 0.4 mg/kg/dose at bedtime for 4 doses (days 5 to 8); continue to titrate in 0.2 mg/kg/day increments at 4- to 5-day intervals until clinical response or intolerable side effects (constipation, dry mouth, urinary retention, sedation); maximum daily dose: 1 mg/kg/day or 50 mg/day, whichever is less (Ref). Usual effective range: 0.25 to 1 mg/kg/dose at bedtime (Ref). In some patients, may need to consider twice-daily dosing: 25% to 30% of total daily dose administered in the morning and 70% to 75% in the evening (Ref).
Discontinuation of therapy: Consider planning antidepressant therapy discontinuation for lower-stress times, recognizing non-illness-related factors could cause stress or anxiety and be misattributed to antidepressant discontinuation (Ref). Upon discontinuation of antidepressant therapy, gradually taper the dose to minimize the incidence of discontinuation syndromes (withdrawal) and allow for the detection of reemerging disease state symptoms (eg, relapse). Evidence supporting ideal taper rates after illness remission is limited. APA and NICE guidelines suggest tapering therapy over at least several weeks with consideration to the half-life of the antidepressant; antidepressants with a shorter half-life may need to be tapered more conservatively. After long-term (years) antidepressant treatment, WFSBP guidelines recommend tapering over 4 to 6 months, with close monitoring during and for 6 months after discontinuation. If intolerable discontinuation symptoms occur following a dose reduction, consider resuming the previously prescribed dose and/or decrease dose at a more gradual rate (Ref).
Dosage adjustment for concomitant therapy: Significant drug interactions exist, requiring dose/frequency adjustment or avoidance. Consult drug interactions database for more information.
Children ≥6 years and Adolescents: Oral:
Altered kidney function: There are no dosage adjustments provided in the manufacturer's labeling. Based on adult data, no dosage adjustment necessary for any degree of kidney dysfunction; however, interindividual variability in clearance and half-life is high; use with caution (Ref).
Hemodialysis: Not dialyzable.
Children ≥6 years and Adolescents: Oral: There are no dosage adjustments provided in the manufacturer's labeling. Nortriptyline is metabolized hepatically; use with caution.
Nortriptyline may cause anticholinergic effects, such as constipation, xerostomia, blurred vision, palpitations, tachycardia, and urinary retention (Ref). Drugs with anticholinergic effects may increase the risk of falls in older adults (Ref).
Mechanism: Dose-related; binding affinity to the muscarinic receptor(s), permeability of the blood-brain barrier, and serum and tissue concentrations all influence the risk of anticholinergic effects (Ref).
Risk factors:
• Older age (Ref)
• Higher doses (Ref)
• Concomitant use of drugs with anticholinergic properties (Ref)
• Specific tricyclic antidepressants: Nortriptyline is considered to display modest to moderate anticholinergic activity at typical doses compared to agents with high anticholinergic effects, such as amitriptyline (Ref)
Tricyclic antidepressants (TCAs), including nortriptyline, are associated with cardiotoxicity, particularly at supratherapeutic doses. At therapeutic doses, TCAs can cause slowing of intraventricular conduction, manifested by prolonged PR, QRS, and QT intervals on ECG in children, adolescents, and adults (Ref). Sinus tachycardia and potentially life-threatening ventricular arrhythmias, or heart block leading to sudden cardiac death are associated with supratherapeutic doses or therapeutic doses in select patients with severe heart disease or preexisting conduction disorders (eg, Brugada syndrome or bundle branch block, long QT syndrome) (Ref).
Mechanism: Dose-related (some mechanisms); at therapeutic doses, TCAs inhibit sodium channel conduction, potentially delaying cardiac depolarization and causing prolongation of the QRS complex on ECG. Multiple other mechanisms contribute to the cardiac effects associated with TCAs, including inhibition of central cholinergic neurotransmission (potentially causing tachycardia), norepinephrine reuptake inhibition (potentially exacerbating tachycardia), and blockade of alpha-adrenergic receptors (potentially lowering systemic vascular resistance and causing hypotension or orthostatic hypotension). In addition, high doses increase sympathetic and decrease parasympathetic effects on heart rate (Ref). Sinus tachycardia is attributed to the inhibition of norepinephrine and nortriptyline's anticholinergic action (Ref).
Risk factors:
• Increased age (Ref)
• Females (Ref)
• Hypokalemia (Ref)
• Coronary artery disease (Ref)
• Coadministration of drugs independently associated with QT interval prolongation or further increase risk of arrhythmia (nortriptyline shares electrophysiologic properties of type IA antiarrhythmics such as quinidine, procainamide, and disopyramide) (Ref)
• Preexisting conduction disease, particularly bundle branch block or Brugada syndrome, or family history of congenital long QT syndrome (Ref). Note: Use is relatively contraindicated in patients with conduction abnormalities.
• Higher doses, particularly in children (Ref)
Tricyclic antidepressants (TCAs), including nortriptyline, may cause dose-dependent CNS depression, including dizziness, drowsiness, ataxia, cognitive dysfunction (particularly in older adults), confusion, disorientation, fatigue, and psychomotor impairment (Ref).
Mechanism: Dose-related; drowsiness and psychomotor effects are due to anticholinergic and antihistaminergic properties of TCAs, with varying degrees of effects depending on the specific agent. TCAs also produce alpha-adrenergic blockade which can contribute to sedation and dizziness (from orthostatic hypotension) (Ref).
Onset: Varied; difficult to define; some symptoms may occur with first dose.
Risk factors (TCAs in general):
• Concomitant alcohol
• Concomitant CNS depressants (eg, anticholinergics, antihistamines) (Ref)
• Females (Ref)
• Older adults (Ref)
• Increased TCA plasma levels (Ref)
• Specific TCA: Nortriptyline is associated with a low propensity for causing sedation relative to TCAs associated with high levels of sedation, such as amitriptyline (Ref). Nortriptyline is associated with a modest to moderate propensity for producing anticholinergic effects (Ref)
Antidepressants have been associated with an increased risk of falls and bone fractures in observational studies (Ref). Tricyclic antidepressants (TCAs) have also been associated with an increased fracture risk; however, risk varies by agent and the evidence is conflicting, particularly with nortriptyline (Ref).
Mechanism: Not fully elucidated; per selective serotonin reuptake inhibitor-derived literature, may be related to a direct effect on bone metabolism via interaction with 5-HT and osteoblast, osteocyte, and/or osteoclast activity (Ref). Of note, nortriptyline is associated with low 5-HT (serotonin) transporter inhibition compared to its effect on norepinephrine inhibition (Ref). Fall risk with TCAs may also be attributed to sedation, syncope, orthostatic hypotension, and/or confusion (Ref).
Onset: Intermediate; observational studies suggest the increased fracture risk observed with TCAs occurs early and reaches a peak within 1 month of initiation of therapy (Ref)
Risk factors (TCAs in general):
• Concomitant use with other agents that may further affect physical balance and contribute to falls (eg, anxiolytics) (Ref)
Tricyclic antidepressants (TCAs), including nortriptyline, have been rarely associated with syndrome of inappropriate antidiuretic hormone secretion (SIADH) and/or hyponatremia, predominately in the elderly (Ref).
Mechanism: May cause SIADH via release of antidiuretic hormone (ADH) (Ref) or may cause nephrogenic SIADH by increasing the sensitivity of the kidney to ADH (Ref).
Onset: Varied; overall, hyponatremia risk is much higher within 2 to 4 weeks of initiating antidepressant therapy and the risk seems to diminish over time. By 3 to 6 months, the hyponatremia risk is the same as for patients who do not take antidepressants (Ref).
Risk factors:
• Older age (Ref)
• Females (Ref)
• Concomitant use of diuretics (Ref)
• Low body weight (Ref)
• Severe physical illness (Ref)
• Lower baseline serum sodium concentration (selective serotonin reuptake inhibitor [SSRI]–derived literature) (Ref)
• Volume depletion (potential risk factor; SSRI-derived literature) (Ref)
• History of hyponatremia (potential risk factor) (Ref)
• Symptoms of psychosis (potential risk factor) (Ref)
• Specific antidepressant: TCAs have a lower risk for hyponatremia in comparison to SSRIs (Ref)
Tricyclic antidepressants (TCAs) may cause mydriasis (pupillary dilation) and cycloplegia (affected eyes cannot focus on nearby objects), resulting in transient accommodation disturbances and blurred vision (Ref). Mydriasis and cycloplegia usually improve over time as patients develop a tolerance to these effects (Ref). In susceptible individuals, TCA-induced mydriasis may result in the exacerbation of chronic angle-closure glaucoma and/or induction of acute angle-closure glaucoma (AACG). AACG may cause symptoms including eye pain, changes in vision, swelling, and redness, which can rapidly lead to permanent blindness if not treated (Ref).
Mechanism: Mydriasis and cycloplegia are likely due to the anticholinergic effect of TCAs (Ref). TCA-induced effects on norepinephrine and serotonin receptors in the iris and ciliary body of the eye, as well as alpha-adrenergic receptors may also play a role (Ref). In susceptible individuals, mydriasis can lead to AACG, which is caused by the physical obstruction of the outflow of intraocular fluid.
Onset: Blurred vision occurs in the initial stages of treatment with a TCA (Ref).
Risk factors:
For AACG:
• Females (Ref)
• ≥50 years of age (slight increase) (Ref)
• Hyperopia (slight increase) (Ref)
• Personal or family history of AACG (Ref)
• Inuit or Asian descent (Ref)
• Narrow-angle glaucoma (avoid or use with extreme caution in these patients) (Ref)
• Specific tricyclic antidepressants: Nortriptyline is considered to display modest to moderate anticholinergic activity at typical doses (Ref)
Tricyclic antidepressants (TCAs), including nortriptyline, may cause orthostatic hypotension, which may lead to syncope and subsequent falls, particularly in older adults (Ref).
Mechanism: Alpha-adrenergic receptor blockade may lower systemic vascular resistance and result in hypotension, including orthostatic hypotension (Ref).
Onset: In a small study of older adults ≥55 years of age treated with nortriptyline (mean dose: 79 mg/day), orthostatic hypotension appeared during the first week and generally persisted throughout the 7-week study period (Ref).
Risk factors:
• Cardiovascular disease
• Hypovolemia/dehydration (Ref)
• Concurrent medication use that may predispose to hypotension/bradycardia (Ref)
• Older adults, especially in those with preexisting heart conditions (Ref)
• Specific TCA: Nortriptyline is associated with a lower risk of significant orthostatic hypotension compared to other TCAs (Ref)
Serotonin syndrome has been reported and typically occurs with coadministration of multiple drugs with serotonin activity (Ref). The diagnosis of serotonin syndrome is made based on the Hunter Serotonin Toxicity Criteria (Ref) and may result in a spectrum of symptoms, such as anxiety, agitation, confusion, delirium, hyperreflexia, muscle rigidity, myoclonus, tachycardia, tachypnea, hypertension, mydriasis, diaphoresis, and tremor. Severe cases may cause hyperthermia, significant autonomic instability (ie, rapid and severe changes in blood pressure and pulse), coma, and seizures (Ref).
Mechanism: Dose-related; overstimulation of serotonin receptors by serotonergic agents (Ref).
Onset: Rapid; in the majority of cases (74%), onset occurred within 24 hours of treatment initiation, overdose, or change in dose (Ref).
Risk factors:
• Concomitant use of drugs that increase serotonin synthesis, block serotonin reuptake, and/or impair serotonin metabolism (eg, monoamine oxidase inhibitors [MAOIs]). Of note, concomitant use of some serotonergic agents, such as MAOIs, is contraindicated.
Antidepressants have been associated with an increased risk of suicidal thinking and suicidal behavior in pediatric and young adult patients (18 to 24 years) in short-term studies, per product labeling. In adults >24 years of age, short-term studies did not show an increased risk of suicidal thinking and behavior, and in older adults ≥65 years of age, a decreased risk was observed. Although data have yielded inconsistent results regarding the association of antidepressants and risk of suicide, particularly among adults, some evidence shows a trend of an elevated risk of suicidality in younger age groups with certain antidepressants (Ref). Additionally, an observational study suggested an association with decreased rate of antidepressant prescribing and an increase in suicide rates in children and adolescents after the labeling was updated with the warnings (Ref). Of note, the risk of a suicide attempt is inherent in major depression and may persist until remission occurs.
Mechanism: Not established; one of several postulated mechanisms is antidepressants may energize suicidal patients to act on impulses (Ref).
Onset: Varied; increased risk observed in short-term studies (ie, <4 months) in pediatric and young adults; it is unknown whether this risk extends to long-term use (ie, >4 months).
Risk factors:
• Children and adolescents (Ref)
• Depression (risk of suicide is associated with major depression and may persist until remission occurs)
Withdrawal syndrome has been reported in children and adults, primarily following abrupt discontinuation of tricyclic antidepressants (TCAs). Common symptoms include somatic symptoms (eg, lethargy, headache, tremor, sweating, anorexia); affective symptoms (eg, irritability, anxiety, agitation, low mood); sleep disorders (insomnia, excessive dreaming); and gastrointestinal disturbances (eg, nausea/vomiting, abdominal pain, anorexia). Rarely, movement disorders, such as akathisia or parkinsonism, hypomania/mania, psychosis, and/or cardiac arrhythmias may also occur. Of note, sensory abnormalities (eg, shock-like sensations, numbness), which are commonly reported with selective serotonin reuptake inhibitor withdrawal, are rarely seen with TCA withdrawal. Withdrawal symptoms may also occur following gradual tapering (Ref).
Mechanism: Withdrawal; due to reduced availability of serotonin in the CNS with decreasing levels of the serotonergic agent. Other neurotransmission systems, including increased glutamine and dopamine, may also be affected, as well as the hypothalamic-pituitary-adrenal axis (Ref). TCA-associated withdrawal symptoms may also be related in part to an adaptive hypersensitivity of muscarinic cholinergic receptors called cholinergic rebound or cholinergic overdrive and to involve noradrenergic mechanisms (Ref).
Onset: Symptoms generally appear within a few days of stopping or reducing the dosage of the antidepressant. Onset >1 week later is unusual (Ref).
Risk factors:
• Abrupt discontinuation (rather than dose taper) or tapering the antidepressant too quickly (Ref)
• Drugs with a half-life <24 hours (eg, paroxetine, venlafaxine) (Ref)
• Higher doses (Ref)
• Longer duration of treatment (eg, ≥4 weeks) (Ref)
• Prior history of antidepressant withdrawal symptoms (Ref)
The following adverse drug reactions and incidences are derived from product labeling unless otherwise specified. Some reactions listed are based on reports for other agents in this same pharmacologic class and may not be specifically reported for nortriptyline.
<1%: Gastrointestinal: Sublingual adenitis
Frequency not defined:
Cardiovascular: Acute myocardial infarction, cardiac arrhythmia (Ref), cerebrovascular accident, edema, flushing, heart block, hypertension, hypotension, orthostatic hypotension (Ref), palpitations, tachycardia
Dermatologic: Alopecia, diaphoresis (excessive), pruritus, skin photosensitivity, skin rash, urticaria
Endocrine & metabolic: Decreased libido, galactorrhea not associated with childbirth, gynecomastia, increased libido, increased serum glucose, SIADH, weight gain, weight loss
Gastrointestinal: Abdominal cramps, anorexia, constipation, diarrhea, epigastric discomfort, melanoglossia, nausea, paralytic ileus, parotid gland enlargement, stomatitis, unpleasant taste, vomiting, xerostomia
Genitourinary: Breast hypertrophy, impotence, nocturia, testicular swelling, urinary frequency, urinary hesitancy, urinary retention, urinary tract dilation
Hematologic & oncologic: Agranulocytosis, bone marrow depression, eosinophilia, petechia, purpuric disease, thrombocytopenia
Hepatic: Abnormal liver function, cholestatic jaundice
Hypersensitivity: Drug-induced hypersensitivity reaction (tricyclic class)
Nervous system: Agitation, anxiety, ataxia, confusion, delusion, disorientation, dizziness, drowsiness, drug fever, EEG pattern changes, exacerbation of depression, extrapyramidal reaction, fatigue, hallucination, headache, hypomania, insomnia, nightmares, numbness, panic, peripheral neuropathy, restlessness, seizure, tingling of extremities, tingling sensation, withdrawal syndrome (Ref)
Neuromuscular & skeletal: Asthenia, tremor
Ophthalmic: Accommodation disturbance, blurred vision, mydriasis
Otic: Tinnitus
Renal: Polyuria
Postmarketing:
Cardiovascular: Cardiac conduction disorder (Brugada syndrome exacerbation) (Ref), prolonged QT interval on ECG (Ref), sinus tachycardia (Ref), widened QRS complex on ECG (Ref)
Dermatologic: Pityriasis rosea (pityriasis rosea-like drug eruption) (Ref)
Nervous system: Cognitive dysfunction (Ref), psychomotor impairment (Ref), psychosis (including exacerbation of and associated with withdrawal syndrome) (Ref), serotonin syndrome (Ref), suicidal ideation, suicidal tendencies
Ophthalmic: Angle-closure glaucoma
Hypersensitivity to nortriptyline and similar chemical class dibenzazepines, or any component of the formulation; use in a patient during the acute recovery phase of myocardial infarction; use of monoamine oxidase inhibitors (MAOIs) (concurrently or within 14 days of discontinuing either nortriptyline or the MAOI); initiation of nortriptyline in a patient receiving IV methylene blue.
Note: Although nortriptyline is contraindicated per the manufacturer labeling when used in combination with linezolid, new evidence suggests that the combination is unlikely to cause serotonin syndrome (0.06% to 3% risk), and therefore these agents can be administered concomitantly when necessary. Monitor patients on this combination; average duration of serotonin toxicity is ~4 days; however, risks may be greater with longer durations of concurrent therapy. Educate patients on the signs and symptoms of serotonin syndrome (Bai 2022; Butterfield 2012; Karkow 2017; Kufel 2023; Narita 2007; Taylor 2006).
Significant drug interactions exist, requiring dose/frequency adjustment or avoidance. Consult drug interactions database for more information.
Disease-related concerns:
• Cardiovascular disease: Use with caution in patients with a history of cardiovascular disease (including previous MI, stroke, tachycardia).
• Diabetes: Use with caution in patients with diabetes mellitus; a causal relationship of tricyclic antidepressants with poor glycemic control has not been established, although some evidence of association exists. In addition, depression may reduce adherence to diabetic therapies (APA 2010).
• GI motility: Use with caution in patients with decreased GI motility (eg, paralytic ileus) as anticholinergic effects may exacerbate underlying condition.
• Hepatic impairment: Use with caution in patients with hepatic impairment; clearance of TCAs is decreased. Due to the narrow therapeutic index, use lower initial and maintenance doses of TCAs. Use caution in patients with hepatic encephalopathy due to the risk of neurocognitive effects (Mullish 2014).
• Mania/hypomania: May precipitate a shift to mania or hypomania in patients with bipolar disorder. Monotherapy in patients with bipolar disorder should be avoided. Combination therapy with an antidepressant and a mood stabilizer should also be avoided in acute mania or mixed episodes, as well as maintenance treatment in bipolar disorder due to the mood-destabilizing effects of antidepressants (CANMAT [Yatham 2018]; WFSBP [Grunze 2018]). Patients presenting with depressive symptoms should be screened for bipolar disorder. Nortriptyline is not FDA approved for the treatment of bipolar depression.
• Ophthalmic conditions: Use with caution in patients with certain ophthalmic conditions as anticholinergic effects may exacerbate underlying condition.
• Renal impairment: Use with caution in patients with renal impairment.
• Seizure disorder: Use with caution in patients with a history of seizures.
• Urinary retention (eg, benign prostatic hyperplasia): Use with caution in patients with urinary retention as anticholinergic effects may exacerbate underlying condition.
Dosage form specific issues:
• Benzyl alcohol and derivatives: Some dosage forms may contain sodium benzoate/benzoic acid; benzoic acid (benzoate) is a metabolite of benzyl alcohol; large amounts of benzyl alcohol (≥99 mg/kg/day) have been associated with a potentially fatal toxicity (“gasping syndrome”) in neonates; the “gasping syndrome” consists of metabolic acidosis, respiratory distress, gasping respirations, CNS dysfunction (including convulsions, intracranial hemorrhage), hypotension, and cardiovascular collapse (AAP ["Inactive" 1997]; CDC 1982); some data suggests that benzoate displaces bilirubin from protein binding sites (Ahlfors 2001); avoid or use dosage forms containing benzyl alcohol derivative with caution in neonates. See manufacturer's labeling.
Other warnings/precautions:
• Surgery: Recommended by the manufacturer to discontinue prior to elective surgery; risks exist for drug interactions with anesthesia and for cardiac arrhythmias. However, some experts recommend continuing tricyclic antidepressants prior to surgery (Pass 2004). Therapy should not be abruptly discontinued in patients receiving high doses for prolonged periods.
Excipient information presented when available (limited, particularly for generics); consult specific product labeling.
Capsule, Oral:
Pamelor: 10 mg, 25 mg [contains fd&c yellow #6 (sunset yellow), quinoline yellow (d&c yellow #10)]
Pamelor: 50 mg
Pamelor: 75 mg [contains fd&c yellow #6 (sunset yellow), quinoline yellow (d&c yellow #10)]
Generic: 10 mg, 25 mg, 50 mg, 75 mg
Solution, Oral:
Generic: 10 mg/5 mL (473 mL)
Yes
Capsules (Nortriptyline HCl Oral)
10 mg (per each): $0.73 - $0.74
25 mg (per each): $1.47
50 mg (per each): $2.77
75 mg (per each): $4.22
Capsules (Pamelor Oral)
10 mg (per each): $47.15
25 mg (per each): $48.10
50 mg (per each): $49.04
75 mg (per each): $49.98
Solution (Nortriptyline HCl Oral)
10 mg/5 mL (per mL): $0.48
Disclaimer: A representative AWP (Average Wholesale Price) price or price range is provided as reference price only. A range is provided when more than one manufacturer's AWP price is available and uses the low and high price reported by the manufacturers to determine the range. The pricing data should be used for benchmarking purposes only, and as such should not be used alone to set or adjudicate any prices for reimbursement or purchasing functions or considered to be an exact price for a single product and/or manufacturer. Medi-Span expressly disclaims all warranties of any kind or nature, whether express or implied, and assumes no liability with respect to accuracy of price or price range data published in its solutions. In no event shall Medi-Span be liable for special, indirect, incidental, or consequential damages arising from use of price or price range data. Pricing data is updated monthly.
Excipient information presented when available (limited, particularly for generics); consult specific product labeling. [DSC] = Discontinued product
Capsule, Oral:
Aventyl: 10 mg, 25 mg
Generic: 10 mg [DSC], 25 mg [DSC]
Oral: Capsule, oral solution: May administer without regard to food; in pediatric patients, the timing of doses dependent upon use; for neuropathic pain, doses administered at bedtime if once daily; if divided twice daily, the larger daily dose should be administered at bedtime (Ref).
An FDA-approved patient medication guide, which is available with the product information and at http://www.fda.gov/downloads/Drugs/DrugSafety/ucm088671.pdf, must be dispensed with this medication.
Major depressive disorder, unipolar: Treatment of symptoms of unipolar major depressive disorder.
Cyclic vomiting syndrome, moderate to severe, prevention; Functional dyspepsia; Headache, chronic tension-type, prevention; Irritable bowel syndrome–associated pain and global symptoms; Migraine, prevention; Myofascial pain syndrome and related causes of chronic pain including myofascial pelvic pain, nonradicular neck pain, temporomandibular disorders, and vulvodynia; Neuropathic pain, chronic, including diabetic neuropathy; Postherpetic neuralgia; Smoking cessation
Aventyl HCl may be confused with Bentyl
Nortriptyline may be confused with amitriptyline, desipramine, Norpramin
Pamelor may be confused with Demerol, Tambocor [DSC]
Beers Criteria: Nortriptyline is identified in the Beers Criteria as a potentially inappropriate medication to be avoided in patients 65 years and older (independent of diagnosis or condition) due to its strong anticholinergic properties and potential for sedation and orthostatic hypotension. In addition, use TCAs with caution due to their potential to cause or exacerbate syndrome of inappropriate antidiuretic hormone secretion (SIADH) or hyponatremia; monitor sodium closely with initiation or dosage adjustments in older adults (Beers Criteria [AGS 2023]).
Substrate of CYP1A2 (Minor), CYP2C19 (Minor), CYP2D6 (Major), CYP3A4 (Minor); Note: Assignment of Major/Minor substrate status based on clinically relevant drug interaction potential;
Note: Interacting drugs may not be individually listed below if they are part of a group interaction (eg, individual drugs within “CYP3A4 Inducers [Strong]” are NOT listed). For a complete list of drug interactions by individual drug name and detailed management recommendations, use the drug interactions program by clicking on the “Launch drug interactions program” link above.
Acetylcholinesterase Inhibitors: May decrease therapeutic effects of Agents with Clinically Relevant Anticholinergic Effects. Agents with Clinically Relevant Anticholinergic Effects may decrease therapeutic effects of Acetylcholinesterase Inhibitors. Risk C: Monitor
Aclidinium: May increase anticholinergic effects of Agents with Clinically Relevant Anticholinergic Effects. Risk X: Avoid
Acrivastine: May increase anticholinergic effects of Agents with Clinically Relevant Anticholinergic Effects. Risk C: Monitor
Acrivastine: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Agents with Clinically Relevant Anticholinergic Effects: May increase anticholinergic effects of Tricyclic Antidepressants. Risk C: Monitor
Ajmaline: May increase serum concentration of CYP2D6 Substrates (High risk with Inhibitors). Risk C: Monitor
Alcohol (Ethyl): CNS Depressants may increase CNS depressant effects of Alcohol (Ethyl). Risk C: Monitor
Alizapride: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Almotriptan: May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
Alosetron: May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
Alpha-/Beta-Agonists: Tricyclic Antidepressants may increase vasopressor effects of Alpha-/Beta-Agonists. Management: Avoid, if possible, the use of alpha-/beta-agonists in patients receiving tricyclic antidepressants. If combined, monitor for evidence of increased pressor effects and consider reductions in initial dosages of the alpha-/beta-agonist. Risk D: Consider Therapy Modification
Alpha1-Agonists: Tricyclic Antidepressants may increase therapeutic effects of Alpha1-Agonists. Tricyclic Antidepressants may decrease therapeutic effects of Alpha1-Agonists. Risk C: Monitor
Alpha2-Agonists (Ophthalmic): Tricyclic Antidepressants may decrease therapeutic effects of Alpha2-Agonists (Ophthalmic). Risk C: Monitor
Alpha2-Agonists: Tricyclic Antidepressants may decrease antihypertensive effects of Alpha2-Agonists. Management: Consider avoiding this combination. If used, monitor for decreased effects of the alpha2-agonist. Exercise great caution if discontinuing an alpha2-agonist in a patient receiving a TCA. Risk D: Consider Therapy Modification
Amantadine: May increase anticholinergic effects of Agents with Clinically Relevant Anticholinergic Effects. Risk C: Monitor
Amifampridine: Agents With Seizure Threshold Lowering Potential may increase neuroexcitatory and/or seizure-potentiating effects of Amifampridine. Risk C: Monitor
Amisulpride (Oral): Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Amisulpride (Oral). Specifically, the risk of seizures may be increased. Risk C: Monitor
Amisulpride (Oral): May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Amphetamines: Tricyclic Antidepressants may increase adverse/toxic effects of Amphetamines. Tricyclic Antidepressants may potentiate the cardiovascular effects of Amphetamines. Amphetamines may increase serotonergic effects of Tricyclic Antidepressants. This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) and increased cardiovascular effects when these agents are combined. Risk C: Monitor
Antiemetics (5HT3 Antagonists): May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
ARIPiprazole Lauroxil: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of ARIPiprazole Lauroxil. Specifically, the risk of seizures may be increased. Risk C: Monitor
ARIPiprazole: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of ARIPiprazole. Specifically, the risk of seizures may be increased. Risk C: Monitor
Artemether and Lumefantrine: May increase serum concentration of CYP2D6 Substrates (High risk with Inhibitors). Risk C: Monitor
Articaine: May increase CNS depressant effects of CNS Depressants. Management: Consider reducing the dose of articaine if possible when used in patients who are also receiving CNS depressants. Monitor for excessive CNS depressant effects with any combined use. Risk D: Consider Therapy Modification
Asenapine: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Asenapine. Specifically, the risk of seizures may be increased. Risk C: Monitor
Azelastine (Nasal): May increase CNS depressant effects of CNS Depressants. Risk X: Avoid
Baclofen: Tricyclic Antidepressants may increase adverse neuromuscular effects of Baclofen. Baclofen may increase CNS depressant effects of Tricyclic Antidepressants. Risk C: Monitor
Barbiturates: May increase metabolism of Tricyclic Antidepressants. Management: Monitor for decreased efficacy of tricyclic antidepressants if a barbiturate is initiated/dose increased, or increased effects if a barbiturate is discontinued/dose decreased. Tricyclic antidepressant dose adjustments are likely required. Risk D: Consider Therapy Modification
Benperidol: Agents with Clinically Relevant Anticholinergic Effects may decrease therapeutic effects of Benperidol. Risk C: Monitor
Benperidol: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Benperidol. Specifically, the risk of seizures may be increased. Risk C: Monitor
Benperidol: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Benztropine: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Benztropine. Risk C: Monitor
Beta-Acetyldigoxin: Tricyclic Antidepressants may increase arrhythmogenic effects of Beta-Acetyldigoxin. Risk C: Monitor
Beta2-Agonists: Tricyclic Antidepressants may increase adverse/toxic effects of Beta2-Agonists. Risk C: Monitor
Biperiden: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Biperiden. Risk C: Monitor
Blonanserin: CNS Depressants may increase CNS depressant effects of Blonanserin. Management: Use caution if coadministering blonanserin and CNS depressants; dose reduction of the other CNS depressant may be required. Strong CNS depressants should not be coadministered with blonanserin. Risk D: Consider Therapy Modification
Bornaprine: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Bornaprine. Risk C: Monitor
Botulinum Toxin-Containing Products: May increase anticholinergic effects of Agents with Clinically Relevant Anticholinergic Effects. Risk C: Monitor
Brexanolone: CNS Depressants may increase CNS depressant effects of Brexanolone. Risk C: Monitor
Brexpiprazole: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Brexpiprazole. Specifically, the risk of seizures may be increased. Risk C: Monitor
Brimonidine (Topical): May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Bromopride: May increase adverse/toxic effects of Tricyclic Antidepressants. Risk X: Avoid
Bromperidol: May increase CNS depressant effects of CNS Depressants. Risk X: Avoid
Buclizine: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Buclizine. Risk C: Monitor
Buclizine: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Buprenorphine: CNS Depressants may increase CNS depressant effects of Buprenorphine. Management: Consider reduced doses of other CNS depressants, and avoiding such drugs in patients at high risk of buprenorphine overuse/self-injection. Initiate buprenorphine at lower doses in patients already receiving CNS depressants. Risk D: Consider Therapy Modification
BuPROPion: Tricyclic Antidepressants may increase neuroexcitatory and/or seizure-potentiating effects of BuPROPion. BuPROPion may increase serum concentration of Tricyclic Antidepressants. Risk C: Monitor
BusPIRone: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
BusPIRone: May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
Cannabinoid-Containing Products: Agents with Clinically Relevant Anticholinergic Effects may increase tachycardic effects of Cannabinoid-Containing Products. Risk C: Monitor
Cannabinoid-Containing Products: CNS Depressants may increase CNS depressant effects of Cannabinoid-Containing Products. Risk C: Monitor
CarBAMazepine: May decrease serum concentration of Tricyclic Antidepressants. Risk C: Monitor
Cariprazine: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Cariprazine. Specifically, the risk of seizures may be increased. Risk C: Monitor
Cetirizine (Systemic): May increase CNS depressant effects of CNS Depressants. Management: Consider avoiding this combination if possible. If required, monitor for excessive sedation or CNS depression, limit the dose and duration of combination therapy, and consider CNS depressant dose reductions. Risk D: Consider Therapy Modification
Chloral Hydrate/Chloral Betaine: CNS Depressants may increase CNS depressant effects of Chloral Hydrate/Chloral Betaine. Management: Consider alternatives to the use of chloral hydrate or chloral betaine and additional CNS depressants. If combined, consider a dose reduction of either agent and monitor closely for enhanced CNS depressive effects. Risk D: Consider Therapy Modification
Chlormethiazole: May increase CNS depressant effects of CNS Depressants. Management: Monitor closely for evidence of excessive CNS depression. The chlormethiazole labeling states that an appropriately reduced dose should be used if such a combination must be used. Risk D: Consider Therapy Modification
Chlorphenesin Carbamate: May increase adverse/toxic effects of CNS Depressants. Risk C: Monitor
ChlorproMAZINE: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of ChlorproMAZINE. Specifically, the risk of seizures may be increased. Risk C: Monitor
Chlorprothixene: May increase QTc-prolonging effects of Tricyclic Antidepressants. Risk X: Avoid
Cimetidine: May increase serum concentration of Tricyclic Antidepressants. Risk C: Monitor
Cimetropium: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Cimetropium. Risk X: Avoid
Citalopram: Tricyclic Antidepressants may increase serotonergic effects of Citalopram. Tricyclic Antidepressants may increase serum concentration of Citalopram. Citalopram may increase serum concentration of Tricyclic Antidepressants. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) and increased TCA and citalopram concentrations/effects. Risk C: Monitor
Clothiapine: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Clothiapine. Specifically, the risk of seizures may be increased. Risk C: Monitor
CloZAPine: Agents with Clinically Relevant Anticholinergic Effects may increase constipating effects of CloZAPine. Management: Consider alternatives to this combination whenever possible. If combined, monitor closely for signs and symptoms of gastrointestinal hypomotility and consider prophylactic laxative treatment. Risk D: Consider Therapy Modification
CNS Depressants: May increase adverse/toxic effects of CNS Depressants. Risk C: Monitor
Cocaine (Topical): May increase adverse/toxic effects of Tricyclic Antidepressants. Risk C: Monitor
Cyclizine: May increase anticholinergic effects of Agents with Clinically Relevant Anticholinergic Effects. Risk C: Monitor
Cyclobenzaprine: May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
CYP2D6 Inhibitors (Moderate): May increase serum concentration of Nortriptyline. Risk C: Monitor
CYP2D6 Inhibitors (Strong): May increase serum concentration of Nortriptyline. Risk C: Monitor
Dantrolene: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Dapoxetine: May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Management: Do not use serotonergic agents (high risk) with dapoxetine or within 7 days of serotonergic agent discontinuation. Do not use dapoxetine within 14 days of monoamine oxidase inhibitor use. Dapoxetine labeling lists this combination as contraindicated. Risk X: Avoid
Daridorexant: May increase CNS depressant effects of CNS Depressants. Management: Dose reduction of daridorexant and/or any other CNS depressant may be necessary. Use of daridorexant with alcohol is not recommended, and the use of daridorexant with any other drug to treat insomnia is not recommended. Risk D: Consider Therapy Modification
Darifenacin: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Darifenacin. Risk C: Monitor
Desmopressin: Tricyclic Antidepressants may increase hyponatremic effects of Desmopressin. Risk C: Monitor
DexmedeTOMIDine: CNS Depressants may increase CNS depressant effects of DexmedeTOMIDine. Management: Monitor for increased CNS depression during coadministration of dexmedetomidine and CNS depressants, and consider dose reductions of either agent to avoid excessive CNS depression. Risk D: Consider Therapy Modification
Dexmethylphenidate-Methylphenidate: May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
Dextromethorphan: May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
Dicyclomine: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Dicyclomine. Risk C: Monitor
Difelikefalin: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Difenoxin: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Dihydralazine: CNS Depressants may increase hypotensive effects of Dihydralazine. Risk C: Monitor
Dimethindene (Systemic): Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Dimethindene (Systemic). Risk C: Monitor
Dimethindene (Topical): May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Dothiepin: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Doxylamine: CNS Depressants may increase CNS depressant effects of Doxylamine. Risk C: Monitor
DroNABinol: Agents with Clinically Relevant Anticholinergic Effects may increase tachycardic effects of DroNABinol. Risk X: Avoid
Dronedarone: Tricyclic Antidepressants may increase arrhythmogenic effects of Dronedarone. Risk X: Avoid
DroPERidol: May increase CNS depressant effects of CNS Depressants. Management: Consider dose reductions of droperidol or of other CNS agents (eg, opioids, barbiturates) with concomitant use. Risk D: Consider Therapy Modification
DULoxetine: May increase serotonergic effects of Tricyclic Antidepressants. This could result in serotonin syndrome. DULoxetine may increase serum concentration of Tricyclic Antidepressants. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) and increased TCA concentrations and effects if these agents are combined. Risk C: Monitor
Eletriptan: May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
Eluxadoline: Agents with Clinically Relevant Anticholinergic Effects may increase constipating effects of Eluxadoline. Risk X: Avoid
Emedastine (Systemic): May increase CNS depressant effects of CNS Depressants. Management: Consider avoiding this combination if possible. If required, monitor for excessive sedation or CNS depression, limit the dose and duration of combination therapy, and consider CNS depressant dose reductions. Risk C: Monitor
Entacapone: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Epinephrine (Racemic): Tricyclic Antidepressants may increase adverse/toxic effects of Epinephrine (Racemic). Risk X: Avoid
Ergot Derivatives: May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
Escitalopram: Tricyclic Antidepressants may increase serotonergic effects of Escitalopram. Escitalopram may increase serum concentration of Tricyclic Antidepressants. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) and increased TCA concentrations/effects if these agents are combined. Risk C: Monitor
Esketamine (Nasal): May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Fenfluramine: May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Risk C: Monitor
Fesoterodine: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Fesoterodine. Risk C: Monitor
Flunarizine: CNS Depressants may increase CNS depressant effects of Flunarizine. Risk X: Avoid
Flunitrazepam: CNS Depressants may increase CNS depressant effects of Flunitrazepam. Management: Reduce the dose of CNS depressants when combined with flunitrazepam and monitor patients for evidence of CNS depression (eg, sedation, respiratory depression). Use non-CNS depressant alternatives when available. Risk D: Consider Therapy Modification
FLUoxetine: May increase serotonergic effects of Tricyclic Antidepressants. FLUoxetine may increase serum concentration of Tricyclic Antidepressants. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) and increased TCA concentrations/effects if these agents are combined. Risk D: Consider Therapy Modification
Flupentixol: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Flupentixol. Specifically, the risk of seizures may be increased. Risk C: Monitor
FluPHENAZine: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of FluPHENAZine. Specifically, the risk of seizures may be increased. Risk C: Monitor
FluPHENAZine: May increase anticholinergic effects of Agents with Clinically Relevant Anticholinergic Effects. Risk C: Monitor
FluvoxaMINE: May increase serotonergic effects of Tricyclic Antidepressants. FluvoxaMINE may increase serum concentration of Tricyclic Antidepressants. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) and increased TCA concentrations/effects if these agents are combined. Risk C: Monitor
Gastrointestinal Agents (Prokinetic): Agents with Clinically Relevant Anticholinergic Effects may decrease therapeutic effects of Gastrointestinal Agents (Prokinetic). Risk C: Monitor
Gepirone: May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Risk C: Monitor
Gepotidacin: May decrease anticholinergic effects of Agents with Clinically Relevant Anticholinergic Effects. Risk C: Monitor
Glucagon: Agents with Clinically Relevant Anticholinergic Effects may increase adverse/toxic effects of Glucagon. Specifically, the risk of gastrointestinal adverse effects may be increased. Risk C: Monitor
Glycopyrrolate (Oral Inhalation): Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Glycopyrrolate (Oral Inhalation). Risk X: Avoid
Glycopyrrolate (Systemic): Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Glycopyrrolate (Systemic). Risk C: Monitor
Glycopyrronium (Topical): May increase anticholinergic effects of Agents with Clinically Relevant Anticholinergic Effects. Risk X: Avoid
Guanethidine: Tricyclic Antidepressants may decrease therapeutic effects of Guanethidine. Risk C: Monitor
Haloperidol: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Haloperidol. Specifically, the risk of seizures may be increased. Risk C: Monitor
Haloperidol: QT-prolonging Agents (Indeterminate Risk - Caution) may increase QTc-prolonging effects of Haloperidol. Risk C: Monitor
HydrOXYzine: May increase CNS depressant effects of CNS Depressants. Management: Consider a decrease in the CNS depressant dose, as appropriate, when used together with hydroxyzine. Increase monitoring of signs/symptoms of CNS depression in any patient receiving hydroxyzine together with another CNS depressant. Risk D: Consider Therapy Modification
Iloperidone: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Iloperidone. Specifically, the risk of seizures may be increased. Risk C: Monitor
Iobenguane Radiopharmaceutical Products: Tricyclic Antidepressants may decrease therapeutic effects of Iobenguane Radiopharmaceutical Products. Management: Discontinue all drugs that may inhibit or interfere with catecholamine transport or uptake for at least 5 biological half-lives before iobenguane administration. Do not administer these drugs until at least 7 days after each iobenguane dose. Risk X: Avoid
Iohexol: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Iohexol. Specifically, the risk for seizures may be increased. Management: Discontinue agents that may lower the seizure threshold 48 hours prior to intrathecal use of iohexol. Wait at least 24 hours after the procedure to resume such agents. In nonelective procedures, consider use of prophylactic antiseizure drugs. Risk D: Consider Therapy Modification
Iomeprol: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Iomeprol. Specifically, the risk for seizures may be increased. Management: Discontinue agents that may lower the seizure threshold 48 hours prior to intrathecal use of iomeprol. Wait at least 24 hours after the procedure to resume such agents. In nonelective procedures, consider use of prophylactic antiseizure drugs. Risk D: Consider Therapy Modification
Iopamidol: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Iopamidol. Specifically, the risk for seizures may be increased. Management: Discontinue agents that may lower the seizure threshold 48 hours prior to intrathecal use of iopamidol. Wait at least 24 hours after the procedure to resume such agents. In nonelective procedures, consider use of prophylactic antiseizure drugs. Risk D: Consider Therapy Modification
Ipratropium (Nasal): May increase anticholinergic effects of Agents with Clinically Relevant Anticholinergic Effects. Risk C: Monitor
Ipratropium (Oral Inhalation): May increase anticholinergic effects of Agents with Clinically Relevant Anticholinergic Effects. Risk X: Avoid
Itopride: Agents with Clinically Relevant Anticholinergic Effects may decrease therapeutic effects of Itopride. Risk C: Monitor
Ixabepilone: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Kava Kava: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Ketotifen (Systemic): May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Kratom: May increase CNS depressant effects of CNS Depressants. Risk X: Avoid
Lasmiditan: May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
Lemborexant: May increase CNS depressant effects of CNS Depressants. Management: Dosage adjustments of lemborexant and of concomitant CNS depressants may be necessary when administered together because of potentially additive CNS depressant effects. Close monitoring for CNS depressant effects is necessary. Risk D: Consider Therapy Modification
Levocetirizine: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Levosulpiride: Agents with Clinically Relevant Anticholinergic Effects may decrease therapeutic effects of Levosulpiride. Risk X: Avoid
Linezolid: May increase serotonergic effects of Tricyclic Antidepressants. This could result in serotonin syndrome. Risk X: Avoid
Lisuride: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Lofepramine: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Lofexidine: Tricyclic Antidepressants may decrease therapeutic effects of Lofexidine. Management: Consider avoiding this drug combination when possible. If concurrent administration is required, monitor blood pressure carefully at the beginning of the combined therapy and when either drug is stopped. Adjust the dosage accordingly. Risk D: Consider Therapy Modification
Loxapine: CNS Depressants may increase CNS depressant effects of Loxapine. Management: Consider reducing the dose of CNS depressants administered concomitantly with loxapine due to an increased risk of respiratory depression, sedation, hypotension, and syncope. Risk D: Consider Therapy Modification
Lumateperone: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Lumateperone. Specifically, the risk of seizures may be increased. Risk C: Monitor
Lurasidone: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Lurasidone. Specifically, the risk of seizures may be increased. Risk C: Monitor
Magnesium Sulfate: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Maprotiline: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Maprotiline. Risk C: Monitor
Mavorixafor: May increase serum concentration of CYP2D6 Substrates (High risk with Inhibitors). Risk X: Avoid
Melitracen [INT]: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Melperone: May increase anticholinergic effects of Agents with Clinically Relevant Anticholinergic Effects. Risk C: Monitor
Melperone: Tricyclic Antidepressants may increase adverse/toxic effects of Melperone. Melperone may increase adverse/toxic effects of Tricyclic Antidepressants. Melperone may increase serum concentration of Tricyclic Antidepressants. Risk C: Monitor
Mequitazine: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Metaxalone: May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
Metergoline: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Methotrimeprazine: CNS Depressants may increase CNS depressant effects of Methotrimeprazine. Methotrimeprazine may increase CNS depressant effects of CNS Depressants. Management: Reduce the usual dose of CNS depressants by 50% if starting methotrimeprazine until the dose of methotrimeprazine is stable. Monitor patient closely for evidence of CNS depression. Risk D: Consider Therapy Modification
Methoxyflurane: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Methscopolamine: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Methscopolamine. Risk C: Monitor
Methylene Blue: Tricyclic Antidepressants may increase serotonergic effects of Methylene Blue. This could result in serotonin syndrome. Risk X: Avoid
Metoclopramide: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Metoclopramide: May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Management: Consider monitoring for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
MetyroSINE: CNS Depressants may increase sedative effects of MetyroSINE. Risk C: Monitor
Minocycline (Systemic): May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Mirabegron: Agents with Clinically Relevant Anticholinergic Effects may increase adverse/toxic effects of Mirabegron. Risk C: Monitor
Molindone: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Molindone. Specifically, the risk of seizures may be increased. Risk C: Monitor
Monoamine Oxidase Inhibitors (Antidepressant): May increase serotonergic effects of Tricyclic Antidepressants. This could result in serotonin syndrome. Risk X: Avoid
Nabilone: May increase CNS depressant effects of CNS Depressants. Risk X: Avoid
Nalfurafine: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Nefazodone: Tricyclic Antidepressants may increase serotonergic effects of Nefazodone. This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
Nicorandil: Tricyclic Antidepressants may increase hypotensive effects of Nicorandil. Risk C: Monitor
Nitroglycerin: Agents with Clinically Relevant Anticholinergic Effects may decrease absorption of Nitroglycerin. Specifically, anticholinergic agents may decrease the dissolution of sublingual nitroglycerin tablets, possibly impairing or slowing nitroglycerin absorption. Risk C: Monitor
Nonsteroidal Anti-Inflammatory Agents: Tricyclic Antidepressants may increase antiplatelet effects of Nonsteroidal Anti-Inflammatory Agents. Tricyclic Antidepressants may increase adverse/toxic effects of Nonsteroidal Anti-Inflammatory Agents. Specifically, the risk of major adverse cardiac events (MACE), hemorrhagic stroke, ischemic stroke, and heart failure may be increased. Risk C: Monitor
Noscapine: CNS Depressants may increase adverse/toxic effects of Noscapine. Risk X: Avoid
OLANZapine: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of OLANZapine. Risk C: Monitor
OLANZapine: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of OLANZapine. Specifically, the risk of seizures may be increased. Risk C: Monitor
Olopatadine (Nasal): May increase CNS depressant effects of CNS Depressants. Risk X: Avoid
Ondansetron: May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
Opicapone: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Opioid Agonists: CNS Depressants may increase CNS depressant effects of Opioid Agonists. Management: Avoid concomitant use of opioid agonists and benzodiazepines or other CNS depressants when possible. These agents should only be combined if alternative treatment options are inadequate. If combined, limit the dosages and duration of each drug. Risk D: Consider Therapy Modification
Opipramol: May increase anticholinergic effects of Agents with Clinically Relevant Anticholinergic Effects. Risk C: Monitor
Opipramol: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Opipramol: May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
Orphenadrine: CNS Depressants may increase CNS depressant effects of Orphenadrine. Risk X: Avoid
Oxatomide: May increase anticholinergic effects of Agents with Clinically Relevant Anticholinergic Effects. Risk X: Avoid
Oxitriptan: Serotonergic Agents (High Risk) may increase serotonergic effects of Oxitriptan. This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
Oxomemazine: May increase CNS depressant effects of CNS Depressants. Risk X: Avoid
Oxybate Salt Products: CNS Depressants may increase CNS depressant effects of Oxybate Salt Products. Management: Consider alternatives to this combination when possible. If combined, dose reduction or discontinuation of one or more CNS depressants (including the oxybate salt product) should be considered. Interrupt oxybate salt treatment during short-term opioid use Risk D: Consider Therapy Modification
OxyBUTYnin: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of OxyBUTYnin. Risk C: Monitor
OxyCODONE: CNS Depressants may increase CNS depressant effects of OxyCODONE. Management: Avoid concomitant use of oxycodone and benzodiazepines or other CNS depressants when possible. These agents should only be combined if alternative treatment options are inadequate. If combined, limit the dosages and duration of each drug. Risk D: Consider Therapy Modification
Paliperidone: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Paliperidone. Specifically, the risk of seizures may be increased. Risk C: Monitor
Paliperidone: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Paraldehyde: CNS Depressants may increase CNS depressant effects of Paraldehyde. Risk X: Avoid
PARoxetine: May increase serotonergic effects of Tricyclic Antidepressants. PARoxetine may increase serum concentration of Tricyclic Antidepressants. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) and increased TCA concentrations/effects if these agents are combined. Risk D: Consider Therapy Modification
Peginterferon Alfa-2b: May decrease serum concentration of CYP2D6 Substrates (High risk with Inhibitors). Peginterferon Alfa-2b may increase serum concentration of CYP2D6 Substrates (High risk with Inhibitors). Risk C: Monitor
Perampanel: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Perazine: May increase anticholinergic effects of Agents with Clinically Relevant Anticholinergic Effects. Risk C: Monitor
Periciazine: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Periciazine. Specifically, the risk of seizures may be increased. Risk C: Monitor
Periciazine: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Perphenazine: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Perphenazine. Risk C: Monitor
Perphenazine: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Perphenazine. Specifically, the risk of seizures may be increased. Risk C: Monitor
Pimozide: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Pimozide. Specifically, the risk of seizures may be increased. Risk C: Monitor
Pipamperone: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Pipamperone. Specifically, the risk of seizures may be increased. Risk X: Avoid
Piribedil: CNS Depressants may increase CNS depressant effects of Piribedil. Risk C: Monitor
Pitolisant: Tricyclic Antidepressants may decrease therapeutic effects of Pitolisant. Risk X: Avoid
Pizotifen: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Polyethylene Glycol-Electrolyte Solution: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Polyethylene Glycol-Electrolyte Solution. Specifically, the risk of seizure may be increased. Risk C: Monitor
Potassium Chloride: Agents with Clinically Relevant Anticholinergic Effects may increase ulcerogenic effects of Potassium Chloride. Management: Patients on drugs with substantial anticholinergic effects should avoid using any solid oral dosage form of potassium chloride. Risk X: Avoid
Potassium Citrate: Agents with Clinically Relevant Anticholinergic Effects may increase ulcerogenic effects of Potassium Citrate. Management: Patients on drugs with substantial anticholinergic effects should avoid using any solid oral dosage form of potassium citrate. Risk X: Avoid
Pramipexole: CNS Depressants may increase sedative effects of Pramipexole. Risk C: Monitor
Pramlintide: May increase anticholinergic effects of Agents with Clinically Relevant Anticholinergic Effects. These effects are specific to the GI tract. Risk X: Avoid
Procarbazine: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Prochlorperazine: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Prochlorperazine. Specifically, the risk of seizures may be increased. Risk C: Monitor
Promazine: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Promazine. Specifically, the risk of seizures may be increased. Risk C: Monitor
Promethazine: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Promethazine. Risk C: Monitor
Propantheline: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Propantheline. Risk C: Monitor
Propiverine: May increase anticholinergic effects of Agents with Clinically Relevant Anticholinergic Effects. Risk C: Monitor
Psilocybin: Antidepressants may decrease therapeutic effects of Psilocybin. Risk C: Monitor
QT-prolonging Agents (Highest Risk): QT-prolonging Agents (Indeterminate Risk - Caution) may increase QTc-prolonging effects of QT-prolonging Agents (Highest Risk). Management: Monitor for QTc interval prolongation and ventricular arrhythmias when these agents are combined. Patients with additional risk factors for QTc prolongation may be at even higher risk. Risk C: Monitor
QUEtiapine: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of QUEtiapine. Specifically, the risk of seizures may be increased. Risk C: Monitor
QuiNIDine: May increase anticholinergic effects of Agents with Clinically Relevant Anticholinergic Effects. Risk C: Monitor
Ramosetron: Agents with Clinically Relevant Anticholinergic Effects may increase constipating effects of Ramosetron. Risk C: Monitor
Ramosetron: May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
Rasagiline: May increase serotonergic effects of Tricyclic Antidepressants. This could result in serotonin syndrome. Risk X: Avoid
Revefenacin: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Revefenacin. Risk X: Avoid
RifAMPin: May decrease serum concentration of Nortriptyline. Risk C: Monitor
Rifapentine: May decrease serum concentration of Nortriptyline. Risk C: Monitor
RisperiDONE: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of RisperiDONE. Specifically, the risk of seizures may be increased. Risk C: Monitor
Rivastigmine: Agents with Clinically Relevant Anticholinergic Effects may decrease therapeutic effects of Rivastigmine. Rivastigmine may decrease therapeutic effects of Agents with Clinically Relevant Anticholinergic Effects. Management: Use of rivastigmine with an anticholinergic agent is not recommended unless clinically necessary. If the combination is necessary, monitor for reduced anticholinergic effects. Risk D: Consider Therapy Modification
Ropeginterferon Alfa-2b: CNS Depressants may increase adverse/toxic effects of Ropeginterferon Alfa-2b. Specifically, the risk of neuropsychiatric adverse effects may be increased. Management: Avoid coadministration of ropeginterferon alfa-2b and other CNS depressants. If this combination cannot be avoided, monitor patients for neuropsychiatric adverse effects (eg, depression, suicidal ideation, aggression, mania). Risk D: Consider Therapy Modification
ROPINIRole: CNS Depressants may increase sedative effects of ROPINIRole. Risk C: Monitor
Rotigotine: CNS Depressants may increase sedative effects of Rotigotine. Risk C: Monitor
Safinamide: May increase serotonergic effects of Tricyclic Antidepressants. This could result in serotonin syndrome. Risk X: Avoid
Scopolamine: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Scopolamine. Risk C: Monitor
Secretin: Agents with Clinically Relevant Anticholinergic Effects may decrease therapeutic effects of Secretin. Management: Avoid concomitant use of anticholinergic agents and secretin. Discontinue anticholinergic agents at least 5 half-lives prior to administration of secretin. Risk D: Consider Therapy Modification
Selegiline: May increase serotonergic effects of Tricyclic Antidepressants. This could result in serotonin syndrome. Risk X: Avoid
Serotonergic Agents (High Risk, Miscellaneous): Tricyclic Antidepressants may increase serotonergic effects of Serotonergic Agents (High Risk, Miscellaneous). This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
Serotonergic Non-Opioid CNS Depressants: Tricyclic Antidepressants may increase serotonergic effects of Serotonergic Non-Opioid CNS Depressants. This could result in serotonin syndrome. Tricyclic Antidepressants may increase CNS depressant effects of Serotonergic Non-Opioid CNS Depressants. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) and CNS depression when these agents are combined. Risk C: Monitor
Serotonergic Opioids (High Risk): May increase serotonergic effects of Tricyclic Antidepressants. This could result in serotonin syndrome. Tricyclic Antidepressants may increase CNS depressant effects of Serotonergic Opioids (High Risk). Management: Consider alternatives to this drug combination. If combined, monitor for signs and symptoms of serotonin syndrome/serotonin toxicity and CNS depression. Risk D: Consider Therapy Modification
Serotonin 5-HT1D Receptor Agonists (Triptans): May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
Serotonin/Norepinephrine Reuptake Inhibitor: May increase serotonergic effects of Tricyclic Antidepressants. This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes when these agents are combined. Risk C: Monitor
Sertindole: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Sertindole. Specifically, the risk of seizures may be increased. Risk C: Monitor
Sertraline: May increase serotonergic effects of Tricyclic Antidepressants. Sertraline may increase serum concentration of Tricyclic Antidepressants. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) and increased TCA concentrations/effects if these agents are combined. Risk C: Monitor
Sodium Phosphates: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Sodium Phosphates. Specifically, the risk of seizure or loss of consciousness may be increased in patients with significant sodium phosphate-induced fluid or electrolyte abnormalities. Risk C: Monitor
Sofpironium: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Sofpironium. Risk X: Avoid
St John's Wort: May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. St John's Wort may decrease serum concentration of Serotonergic Agents (High Risk). Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
Sulpiride: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Sulpiride. Specifically, the risk of seizures may be increased. Risk C: Monitor
Suvorexant: CNS Depressants may increase CNS depressant effects of Suvorexant. Management: Dose reduction of suvorexant and/or any other CNS depressant may be necessary. Use of suvorexant with alcohol is not recommended, and the use of suvorexant with any other drug to treat insomnia is not recommended. Risk D: Consider Therapy Modification
Syrian Rue: May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Risk C: Monitor
Thalidomide: CNS Depressants may increase CNS depressant effects of Thalidomide. Risk X: Avoid
Thiazide and Thiazide-Like Diuretics: Agents with Clinically Relevant Anticholinergic Effects may increase serum concentration of Thiazide and Thiazide-Like Diuretics. Risk C: Monitor
Thioridazine: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Thioridazine. Specifically, the risk of seizures may be increased. Risk C: Monitor
Thiothixene: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Thiothixene. Risk C: Monitor
Thiothixene: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Thiothixene. Specifically, the risk of seizures may be increased. Risk C: Monitor
Thyroid Products: May increase arrhythmogenic effects of Tricyclic Antidepressants. Thyroid Products may increase stimulatory effects of Tricyclic Antidepressants. Risk C: Monitor
Tiapride: Agents with Clinically Relevant Anticholinergic Effects may decrease therapeutic effects of Tiapride. Risk C: Monitor
Tiotropium: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Tiotropium. Risk X: Avoid
Tobacco (Smoked): May decrease serum concentration of Nortriptyline. Risk C: Monitor
Tolterodine: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Tolterodine. Risk C: Monitor
Topiramate: Agents with Clinically Relevant Anticholinergic Effects may increase adverse/toxic effects of Topiramate. Risk C: Monitor
Tricyclic Antidepressants: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Tricyclic Antidepressants. Risk C: Monitor
Tricyclic Antidepressants: May increase anticholinergic effects of Tricyclic Antidepressants. Tricyclic Antidepressants may increase CNS depressant effects of Tricyclic Antidepressants. Tricyclic Antidepressants may increase serotonergic effects of Tricyclic Antidepressants. This could result in serotonin syndrome. Management: Monitor closely for increased TCA adverse effects, including serotonin syndrome/serotonin toxicity, CNS depression, and anticholinergic effects. Risk C: Monitor
Trifluoperazine: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Trifluoperazine. Specifically, the risk of seizures may be increased. Risk C: Monitor
Trimeprazine: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Trimethobenzamide: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Trimethobenzamide. Risk C: Monitor
Trospium: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Trospium. Risk C: Monitor
Umeclidinium: May increase anticholinergic effects of Agents with Clinically Relevant Anticholinergic Effects. Risk X: Avoid
Valerian: May increase CNS depressant effects of CNS Depressants. Risk C: Monitor
Valproic Acid and Derivatives: May increase serum concentration of Tricyclic Antidepressants. Risk C: Monitor
Vasopressin: Drugs Suspected of Causing SIADH may increase therapeutic effects of Vasopressin. Specifically, the pressor and antidiuretic effects of vasopressin may be increased. Risk C: Monitor
Vilazodone: Tricyclic Antidepressants may increase serotonergic effects of Vilazodone. This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) if these agents are combined. Risk C: Monitor
Vortioxetine: Tricyclic Antidepressants may increase serotonergic effects of Vortioxetine. This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) if these agents are combined. Risk C: Monitor
Ziprasidone: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Ziprasidone. Specifically, the risk of seizures may be increased. Risk C: Monitor
Ziprasidone: May increase serotonergic effects of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Risk C: Monitor
Zolpidem: CNS Depressants may increase CNS depressant effects of Zolpidem. Management: Reduce the Intermezzo brand sublingual zolpidem adult dose to 1.75 mg for men who are also receiving other CNS depressants. No such dose change is recommended for women. Avoid use with other CNS depressants at bedtime; avoid use with alcohol. Risk D: Consider Therapy Modification
Zuclopenthixol: Agents with Clinically Relevant Anticholinergic Effects may increase anticholinergic effects of Zuclopenthixol. Risk C: Monitor
Zuclopenthixol: Agents With Seizure Threshold Lowering Potential may increase adverse/toxic effects of Zuclopenthixol. Specifically, the risk of seizures may be increased. Risk C: Monitor
Zuranolone: May increase CNS depressant effects of CNS Depressants. Management: Consider alternatives to the use of zuranolone with other CNS depressants or alcohol. If combined, consider a zuranolone dose reduction and monitor patients closely for increased CNS depressant effects. Risk D: Consider Therapy Modification
Evaluate pregnancy status prior to initiating treatment for depression in patients who could become pregnant. Treatment should not be withheld, but pharmacologic management may vary based on reproductive status, severity of illness, and history of antidepressant response (ACOG 2023; WFSBP [Dodd 2018]). When treating depression, tricyclic antidepressants are not first-line medications for use prior to conception in patients who are treatment naïve or who do not have a history of effective treatment. Patients effectively treated may continue their current medication when planning a pregnancy unless contraindications exist (BAP [McAllister-Williams 2017]). Management of mental health conditions in patients who could become pregnant should be based on a shared decision-making process that considers the possibility of pregnancy during treatment (ACOG 2023; BAP [McAllister-Williams 2017]; CANMAT [MacQueen 2016]).
Nortriptyline is effective for prevention of migraines. In general, preventive treatment for migraine in patients trying to become pregnant should be avoided. Options for patients planning a pregnancy should be considered as part of a shared decision-making process. Nonpharmacologic interventions should be considered initially. When needed, preventive treatment should be individualized considering the available safety data and needs of the patient should pregnancy occur. A gradual discontinuation of preventive medications is generally preferred when the decision is made to stop treatment prior to conception (ACOG 2022; AHS [Ailani 2021]).
Nortriptyline and its metabolites cross the human placenta and can be detected in cord blood (Schoretsanitis 2021).
Outcome data following maternal use of tricyclic antidepressants (TCAs) including nortriptyline are available (Altshuler 1996; Bérard 2017; Cantarutti 2017; De Vries 2021; Ericson 1999; Huybrechts 2015; McDonagh 2014; McElhatton 1996). Study outcomes vary due to limited data, differences in study design, and confounders (Gentile 2014; Yonkers 2014).
Due to pregnancy-induced physiologic changes, some pharmacokinetic properties of nortriptyline may be altered. Nortriptyline clearance may be increased due to increased CYP2D6 activity particularly during the third trimester. Dose adjustments may be required. Therapeutic drug monitoring of nortriptyline is recommended monthly during pregnancy and 2 to 6 weeks postpartum to avoid toxicity and monitor efficacy (Deligiannidis 2014; Schoretsanitis 2020; Yue 2023).
Untreated and undertreated mental health conditions are associated with adverse pregnancy outcomes. Untreated or undertreated depression is associated with preterm birth, low birth weight, preeclampsia, postpartum depression, and impaired infant attachment (associated with long-term developmental effects). Discontinuing effective medications during pregnancy increases the risk of relapse. Management of mental health conditions should be made as part of a shared decision-making process (ACOG 2023). Patients effectively treated for depression prepregnancy may use the same medication during pregnancy unless contraindications exist (ACOG 2023; BAP [McAllister-Williams 2017]; CANMAT [MacQueen 2016]). Treatment should not be withheld or discontinued based only on pregnancy status (ACOG 2023). TCAs are not considered first-line medications for pregnant patients who are treatment naïve or who do not have a history of effective treatment with another medication (ACOG 2023; BAP [McAllister-Williams 2017]; CANMAT [MacQueen 2016]), but may be considered as an alternative (CANMAT [MacQueen 2016]). When medications are used, the lowest effective dose of a single agent is recommended. Optimize dosing prior to changing a medication or adding additional agents whenever possible. Close monitoring for symptom improvement with a validated screening tool during pregnancy is recommended. Manage side effects as needed (ACOG 2023).
In general, preventive treatment for migraine should be avoided during pregnancy. Options for pregnant patients should be considered as part of a shared decision-making process. Nonpharmacologic interventions should be considered initially. When needed, preventive treatment should be individualized considering the available safety data, the potential for adverse maternal and fetal events, and the needs of the patient (ACOG 2022; AHS [Ailani 2021]). Efficacy data of TCAs for migraine prevention in pregnancy are limited and use is not recommended (ACOG 2022). Nortriptyline may be used if other agents are ineffective or contraindicated, considering the risks and benefits of use (ACOG 2022; CHS [Pringsheim 2012]).
Data collection to monitor pregnancy and infant outcomes following exposure to antidepressant medications is ongoing. Encourage pregnant patients 45 years of age and younger with a history of psychiatric illness to enroll in the National Pregnancy Registry for Antidepressants (1-866-961-2388 or https://womensmentalhealth.org/research/pregnancyregistry/antidepressants).
Nortriptyline is present in breast milk.
Data related to the presence of nortriptyline in breast milk are available from a case report. The patient was taking nortriptyline 100 mg nightly during the second and third trimesters of pregnancy, then temporarily stopped for 2 weeks prior to a planned cesarean delivery. Breast milk was sampled 6 days postpartum following maternal administration of nortriptyline 125 mg daily, starting at day 1 postpartum. Breast milk concentrations of nortriptyline ranged from 0.177 to 0.404 mcg/mL. Based on the mean breast milk concentration, authors of the study calculated the estimated exposure of nortriptyline to the breastfeeding infant to be 27 mcg/kg/day (relative infant dose [RID] 1.3% based on the weight-adjusted maternal dose of a 60 kg person). Adverse events were not observed in the breastfeeding infant (Matheson 1988). In general, breastfeeding is considered acceptable when the RID of a medication is <10% (Anderson 2016; Ito 2000); however, some sources note breastfeeding should only be considered if the RID is <5% for psychotropic agents (Anderson 2021).
Nortriptyline and the E-10-hydroxynortriptyline and Z-10-hydroxynortriptyline metabolites have been detected in the serum of some infants exposed to nortriptyline via breast milk. Adverse events have not been observed (Weissman 2004; Wisner 2006).
Monitor infants exposed to psychotropic medication via breast milk for adverse effects (eg, over sedation, poor feeding) (BAP [McAllister-Williams 2017]).
Due to pregnancy-induced physiologic changes, the clearance of nortriptyline may be altered; maternal serum concentrations should be monitored closely immediately postpartum to prevent toxicity (Deligiannidis 2014; Schoretsanitis 2020; Yue 2023).
Patients effectively treated for depression with a tricyclic antidepressant (TCA) during pregnancy may continue their medication postpartum unless contraindications to breastfeeding exist. The presence and concentration of the drug in breast milk, efficacy of maternal treatment, and infant age should be considered when initiating a medication for the first time postpartum. When first initiating an antidepressant in a patient who is treatment naïve and breastfeeding, agents other than TCAs are preferred (ABM [Sriraman 2015]). Nortriptyline may be preferred when a TCA is needed (ABM [Sriraman 2015]; CANMAT [MacQueen 2016]).
In general, preventive treatment for migraine in breastfeeding patients should be avoided. When needed, therapy should be individualized considering the available safety data and needs of the patient (AHS [Ailani 2021]). Nortriptyline may be used if other agents are ineffective or contraindicated (CHS [Pringsheim 2012]).
Serum sodium in at-risk populations (as clinically indicated), blood pressure, heart pulse rate and ECG in older adults and patients with preexisting cardiac disease; blood glucose; weight and BMI; therapeutic blood levels (as clinically indicated); mental alertness; closely monitor all patients for depression, clinical worsening, suicidality, psychosis, or unusual changes in behavior (such as anxiety, agitation, panic attacks, insomnia, irritability, hostility, impulsivity, akathisia, hypomania, and mania), particularly during the initial 1 to 2 months of therapy or during periods of dosage adjustments (increased or decreases).
Timing of serum samples: Draw trough just before next dose (Hiemke 2018).
Therapeutic reference range: 50 to 170 ng/mL (SI: 189.9 to 645.5 nmol/L) (Hiemke 2018; manufacturer’s labeling).
Laboratory alert level: 300 ng/mL (SI: 1,139.1 nmol/L) (Hiemke 2018).
Traditionally believed to increase the synaptic concentration of serotonin and/or norepinephrine in the central nervous system by inhibition of their reuptake by the presynaptic neuronal membrane. Inhibits the activity of histamine, 5-hydroxytryptamine, and acetylcholine. It increases the pressor effect of norepinephrine but blocks the pressor response of phenethylamine. However, additional receptor effects have been found including desensitization of adenyl cyclase, down regulation of beta-adrenergic receptors, and down regulation of serotonin receptors.
Onset of action: Depression: Initial effects may be observed within 1 to 2 weeks of treatment, with continued improvements through 4 to 6 weeks (Papakostas 2006; Posternak 2005; Szegedi 2009).
Absorption: Oral: Rapid (Alexanderson 1972)
Distribution: Vd: 21.1 to 31.1 L/kg (Alexanderson 1972)
Protein binding: Extensively bound to plasma proteins (Alexanderson 1972)
Metabolism: Primarily hepatic; extensive first-pass effect (Rubin 1985)
Bioavailability: 46% to 70% (Rubin 1985)
Half-life elimination:
Adults: 14 to 51 hours (mean: 26 hours) (Dawling 1980)
Elderly: 23.5 to 79 hours (mean 45 hours) (Dawling 1980)
Time to peak, serum: 4 to 9 hours (Alexanderson 1972)
Excretion: Urine (as metabolites and small amounts of unchanged drug) (Alexanderson 1972)